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ABSTRACT 

  Heat stress (HS) negatively affects pig performance variables and is thus a 

costly industry issue.  It is unknown whether or not HS directly or indirectly (via 

reduced feed intake) is responsible for the suboptimal production.  To account for 

differences in nutrient intake, we utilized an ad-libitum thermal neutral control group 

and a pair-fed thermal neutral control group of pigs.  In these experiments, pigs in 

HS conditions had increased body temperatures, reduced feed intake, and lighter 

body weights compared to controls.  Presumably, this production difference may 

also includes a difference in body composition as HS pigs have increased circulating 

insulin levels, decreased basal lipolysis, and increased adipose tissue lipogenesis 

compared to bioenergetic controls.  In addition, HS pigs had increased markers of 

protein catabolism.  Heat stress pigs also had compromised intestinal integrity, but 

this appears to be due to be confounded by reduced nutrient intake, as pair-fed 

controls had similar intestinal dysfunction characteristics.  In conclusion, heat stress 

directly and indirectly (via reduced feed intake) affects post-absorptive metabolism 

and intestinal integrity and both variables probably contribute to decreased growth 

parameters in young pigs.  
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CHAPTER 1 
LITERATURE REVIEW  

              Climate Change 

    Although there is no consensus regarding the extent or cause of climate 

change, there is little doubt global warming is occurring (Bernabucci et al., 2010).  

Climate change affects global temperatures, weather patterns, and sea level.  

Deforestation as well as green house gas emissions (i.e. CO2, N2O, and CH4) 

contribute to rising temperatures (U.S. EPA, 2010).  According to NASA’s Goddard 

Institute for Space Studies Surface Temperature Analysis (GISTEMP), 2009 was the 

second warmest year since monitoring began in 1880 and the last 10 years have 

been the warmest decade on record.  More recently, GISTEMP indicates 2010 has 

officially been the warmest year on record.  Data suggests that temperatures are 

rising at a rate of 0.2°C per decade and this number is likely to increase in the future 

(US EPA, 2010).  

  Another effect of climate change is severe weather.  The National Research 

Defense Council (2010) stated that the southwestern USA experienced extreme 

drought in 2007 and the entire United States experienced moderate drought that 

same year.  Coinciding with extreme drought, the USA has also observed an 

increase in other types of severe weather, including higher winds, stronger storms, 

and a possible increase in hurricane frequency (NRDC, 2010).  This also includes an 

increase in the number of US heat wave days (Hayhoe et al., 2004).  Collectively, 

this information indicates the world’s future climate is likely to be accompanied by 

higher temperatures and more extreme weather.  Increased numbers of heat-wave 
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days increases the likelihood of heat-related illness in both humans and animal 

species and necessitates a better understanding of how heat stress affects 

biological systems. 

       Human Concerns 

  Humans can become ill or even die due to heat stress-related pathologies.  In 

2003, nearly 15,000 people died during a two week heat-wave in France (Kovats et 

al., 2006) and over all it is estimated that 50,000 Europeans died during the same 

heat-wave (Kosatsky, 2005; Patz et al., 2005).  For weather to be considered a heat- 

wave, temperatures must exceed 32.2°C (90°F) for three  consecutive days (National 

Weather Service, 2000).  High temperatures alone can be deadly, but in many areas 

high humidity contributes significantly to the heat index. 

  Certain segments of the population are at a higher risk for heat stress due to 

working conditions, age, or predisposing health conditions.  Athletes, soldiers, the 

elderly, firefighters, agricultural workers, diabetics, and children are at a higher risk 

for heat-related illnesses (Bouchama et al., 2007).  Table 1.1 describes those at 

highest risk for heat-related illness and why they are more susceptible to warm 

temperatures (adapted from Barrow and Clark, 1998).  Often human and animal 

deaths occur in areas not accustomed to high temperatures and without proper 

cooling mechanisms (fans, air conditioning, and water).  O’Neill and colleagues 

(2009) note that those individuals acclimated to higher temperatures (such as people 

living in arid, semi-arid and tropical areas) respond differently to a heat-load.  This 

includes a physiological acclimation response as well as behavioral adaptations 
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(spending less time outside or utilizing home air conditioners).  People living in areas 

where summer temperatures are constantly elevated have a decreased risk of 

mortality, compared to those living in milder climates that might experience 

temporary elevated temperatures in the summer months (Basu, 2009). 

  Within the health care community, there are inconsistencies in diagnosing 

heat-related illness because no current definition of heat-related mortality exists 

(Ostro et al., 2009).  This causes confounding variables in epidemiological studies 

designed to evaluate weather-related mortality because some causes of death are 

listed as cardiovascular disease or cerebral damage when the underlying cause of 

death is heat stress (Basu, 2009).  This may be due to the fact that heat stress 

(especially if untreated) can cause a variety of serious health problems including 

cardiac failure and central nervous system damage (Caspani et al., 2004). 

  No standard definition or effective treatment exists for heat-stressed patients, 

so methods of alleviating this condition are aimed primarily at prevention.  After 

several major heat waves in the United States and Europe, communities have 

increased preventative measures to aid people during times of excessive heat.  This 

includes increasing air conditioned areas, planting trees (to provide shade), and 

educating people on heat-related illnesses (O’Neill et al., 2009). 
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Table 1.1  1Conditions with increased risk of heat-related illness 
Physiological conditions  
-Fever 
-Dehydration 
-Excessive exercise 
-Chronic illnesses 
-Cardiac conditions 
-Uncontrolled diabetes 
-Extensive skin disease and/or damage 
-Autonomic nervous system disorders 
-Hyperthyroidism 
-Previous Heat-stroke 

Additional factors 
-Urban setting 
-Lack of access to air conditioning 
-Sleep deprivation 
-Wearing heavy clothing 
-Moving to a new climate 

Younger age  
-Decreased ability to sweat 
-Decreased cardiac output at a give                 
metabolic rate 
-Slower acclimation 
-More heat produced for same level of 
activity 
-Greater core temperature required to 
initiate sweating 

Older age 
-Decreased vasodilatation 
-Decreased maximum heart rate, 
resulting in decreased maximum cardiac 
output 
-Decreased fitness level 
-Decreased thirst response 
-Decreased mobility resulting in 
increased  difficulty of easily obtaining 
fluids 

1Information from: Holowatz et al., 2010; Sanders, 2010; and Shendell et al., 2010 
 

    Present Standard Operating Procedures  

  Heat-exhaustion treatment is limited for patients admitted to hospitals.  The 

most common strategy is to first remove a patient from heat exposure and to cool 

with ice via conduction or by evaporative cooling via wetting the skin coupled with 

rehydration (Caspani et al., 2004).  Internal cooling can also be accomplished by 

gastric or rectal flushing with cold water (Glazer, 2005).  The most effective cooling 

method for patients diagnosed with classical or exertional heat stroke, is placing the 

patient in ice water while massaging the arms and legs to aid in circulation.  Despite 

the intensive cooling, over 30% of heat-stroke patients admitted to the emergency 

room die (LoVecchio et al., 2007) and anywhere from 20-65% of patients suffer from 

acute circulatory failure which is often fatal (Bouchama and Knochel, 2002).  Some 
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reports have noted an even higher mortality rate (between 30-80%) in those affected 

by heat-stroke and nearly 50% of those deaths are in the elderly population (Nixdorf-

Miller et al., 2006). 

  There are few medications known to help effectively treat heat-stroke 

patients, but some drugs are effective at preventing shivering and seizures as well 

as metabolic heat production.  One example is dantrolene sodium (a skeletal muscle 

relaxant) which decreases the amount of heat produced by muscles during the 

contraction phase (Bouchama et al., 2007).  This is often used in treatment of 

malignant hyperthermia (not environmental hyperthermia) and acts on the 

sarcoplasmic reticulum by inhibiting release of Ca2+ for the contraction cycle 

(Bouchama et al., 2007).  

  Heat-related illnesses can lead to multi-organ damage and the cause of death 

varies depending on geographic area, and whether death occurred at home or in a 

hospital.  People at a higher risk (such as the elderly) and those that live alone or 

lack social contact are more likely to succumb at home from heat-stroke which 

results in a diagnosis made post-mortem.  Therefore, the cause of death could be 

listed as a secondary reason (i.e. cardiac failure) when the primary source was heat-

stroke (Mastrangelo et al., 2006).  Due to the fact that heat-stroke affects multiple 

organ systems, hospital staff often monitors heart, liver and kidney function and aim 

to protect those organs during treatment.  This can be accomplished by interfering 

with the neurotoxic cascade response and blocking neuronal ischemic damage.  

Circulatory damage and cerebral ischemia can be corrected using some medications 
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such as aminopyrine (to treat fever), hyperbaric oxygen, and shengmai san powder 

(to treat low blood pressure; Yan et al., 2006).  However, the most prevalent 

practices target prevention and not treatment.  For example, firefighters are allowed 

minimal exposure to burning edifices and people are advised to stay inside during 

times of intense temperatures. 

              Animal Agriculture 

  Annual economic losses to global animal agriculture due to heat stress 

surpass billions of dollars.  In the United States, summer-induced decreased 

production is well-documented in every aspect of animal agriculture.  Nationally, the 

swine industry loses $113 million for sows and $202 million for growing-finishing 

swine.  This combined costs over $300 million each year due to heat stress (St-

Pierre et al., 2003).  The fiscal losses are still observed despite recent advances in 

cooling systems, barn management, and other heat abatement strategies.  

  Third world countries are likely to experience greater effects of climate 

change for a number of reasons.  Areas such as China, Africa, and India’s 

populations are growing at an alarming rate (Godfray et al., 2010), and this obviously 

comes with an increased need for food supply.  A majority of human and animal 

populations lie in warm tropical and sub-tropical areas and will be greatly affected by 

rising temperatures (Collier et al., 2006).  Strategies such as zone-cooling (air-

conditioning), and shades with insulated roofing are not cost efficient and systems 

using extensive water or electricity may not be practical or sustainable in many 

areas (Nienaber and Hahn, 2007).  In places which lack sufficient infrastructure, 
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wallowing areas can be used to cool swine.  However, this comes with a risk of 

negatively influencing water supplies and may compromise animal health (Nienaber 

and Hahn, 2007). 

  In addition to growth, animal reproduction is very sensitive to heat stress as 

decreased fertility is often reported during the warm summer months.  The 

southwestern US experiences a high number of days open which is a measure of 

fertility encompassing many traits such as parity and season of calving in dairy 

cows.  This also costs the dairy industry excess money and increased waiting time 

for breeding.  Particularly, the state of Arizona, a producer of cattle (finishing beef 

cattle and dairy cows) experiences between 30-50 excess days open yearly (Oseni 

et al., 2003).  Arizona is a state characterized by a hot, dry desert climate with 

summer temperatures averaging 30°C in May, and 35°C in  July and August (Silva et 

al., 2010).  Temperature humidity indices (THI) during July and August are 

significantly higher due to the monsoon season and increased humidity.  For dairy 

cows, heat stress is classified at a THI ≥ 72 (Armstrong, 1994) and in Arizona the 

THI reaches 72 in early May.  Even with the use of evaporative cooling systems, 

Arizona dairy’s experience THI values well above the heat stress threshold and this 

leads to decreased milk production (Bohmanova et al., 2007).  The average 

decrease in milk production in Arizona during the summer months is approximately 

500 kg/cow per season (Nienaber et al., 1999).  Little information is available about 

heat stress effects on swine reproduction and economics in Arizona because there 

are virtually no hog barns in the state (St-Pierre et al., 2003). 
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  Iowa is the country’s largest producer of finishing hogs and sows with a 

monthly inventory of over 8 million finishing swine and over 800,000 sows (St-Pierre 

et al., 2003).  Iowa has the largest number of farrowings in the country, and heat 

stress causes a loss of 5.2 additional days open annually.  This equates to economic 

losses of almost $5 million combined for both sows and finishing hogs due to heat 

stress alone.  With a maximum THI in July of 80.2, including an average of 70% 

relative humidity, animals are at risk for severe heat exposure.  Both Arizona and 

Iowa incur losses in body weight gain which amount to approximately 2-3 

kg/head/year due to heat stress (St-Pierre et al., 2003).  

         Pigs as Biological Models 

  The pig is an excellent model for biological research because it 

physiologically resembles humans in many ways.  Most commonly, pigs are used to 

study cardiovascular disease because their heart is similar to the human heart.  

More specifically, the coronary artery system is the same as in humans (Granada et 

al., 2009).  Scientists are able to induce elevated LDL levels, high cholesterol, and 

eventually end stage atherosclerosis in domestic pigs (Suzuki et al., 2011).  Porcine 

models are increasingly used for other types of diseases involving obesity, 

dermatology, and diabetes’s among others (Nafikov and Beitz, 2007).  Swine have 

emerged as a potential model for diabetes and metabolic syndrome research 

because they do not possess brown adipose tissue as adults, and the Ossabaw pig 

is an excellent model for insulin resistance (Spurlock and Gabler, 2008). 

  For ethical reasons, animal models are often used to study the effects of heat 



www.manaraa.com

9 

 

stress in humans because it is possible to manipulate the environmental conditions 

they experience and some of the physiological responses are fairly universal across 

species (Aigner et al., 2010).  Although primates are the closest genetically related 

species, the cost and ethical implications for usage in research makes them difficult 

subjects to obtain.  A common species utilized in heat-stroke research is rodents as 

they can mirror the full spectrum of human heat-stroke symptoms (Chen et al., 

2006), but cows, chickens, and sheep are also used.  Finding a species that is cost 

effective, and has enough blood volume and tissue to utilize for research is a difficult 

task.  Rodents are cost effective and readily available, but pose limitations due to 

their small size and physiological differences (i.e. brown adipose tissue).  The 

amounts of blood that can be repeatedly obtained from rodents, combined with small 

sample size from tissue harvesting also contribute to these limitations.  On the other 

hand, cows are a much larger species to work with but are limited by extensive cost 

and physiological differences (i.e. a rumen; Damanhouri and Tayeb, 1992).  Pigs are 

an effective model for heat stress and most of this research has centered on 

reproduction and genetic aspects with primary goals focusing on animal production 

and agriculture applications (not human applications).  

  Swine are particularly susceptible to heat stress because they possess little to 

no functional sweat glands (Curtis, 1983).  In addition, pigs maintain more 

subcutaneous fat compared to other species and this prevents effective heat 

dissipation (Mount et al., 1979).  Due to inadequate sweat glands, pigs depend on 

panting as their primary mechanism of heat dissipation (Patience et al., 2005), 
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especially if they don’t have access to a wallowing area.  The normal body 

temperature of the pig is 39.2°C (102.5°F) and at am bient temperatures above 22°C  

heat stress indicators such as increased respiration rates, and rectal temperatures 

are observed (Huynh et al., 2005).  Nienaber and Hahn (2007) suggest that fast 

growing animals near market weight are at increased risk of severe heat stress 

because of increased metabolic heat due to genetic selection for enhanced lean 

tissue accretion rates.  A 2.1% increase in lean tissue correlates with a metabolic 

heat production increase of 18.7% (Brown-Brandl et al., 2004). 

  Pigs respond to warm temperatures by increasing respiration rate, 

maximizing their surface area by laying on the ground, as well as increasing water 

intake.  According to Marple and co-workers (1974), severe physiological changes 

can be observed in pigs with a rectal temperature reaching 41.5°C (106.7°F).  This 

temperature can be potentially fatal, especially in finishing hogs and lactating sows 

which have decreased ability to dissipate heat.  Table 1.2 shows normal rectal 

temperature of various livestock species. 
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Table 1.2  Normal rectal temperature (RT) of various species 
Species RT, ºF RT, ºC 
Avian 107.6 42.0 
Bovine 101.0 38.3 
Canine 102.0 38.9 
Caprine 103.1 39.5 
Equine 100.0 37.8 
Feline 101.5 38.6 
Leporine 101.5 38.6 
Ovine 102.3 39.1 
Porcine 102.5 39.2 
Rodents 99.1 37.3 
Adapted from Campbell et al., 2003; and O’Brien, 2008 

 

         Heat Stress Effects on Physiology 

Heat-Related Illness 

  Elevated temperatures can cause a range of physiological conditions 

depending on the severity (mild or severe) of heat stress.  The most severe form of 

heat illness in the human is classified as heat stroke and this stage of hyperthermia 

is when people are at the highest risk of dying.  Table 1.3 shows the different forms 

of heat-related illnesses and associated symptoms.  Increased temperature also 

causes elevated respiration rates, heart rate, and blood pressure in humans.  The 

cardiovascular system is able to mitigate the effects of increased temperature until 

heat-stroke sets in, which causes a decrease in blood pressure and the mechanisms 

of heat dissipation are no longer effective (Kregel et al., 1988). 
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Table 1.3  Symptoms of heat-related illnesses1 from mild (1) to severe (5) 
1. Heat edem a 
-Mildest form of heat illness caused by  
 transient peripheral vasodilatation from 
 the heat and orthostatic pooling during  
 prolonged sitting or standing 

2. Heat cramps 
-Painful spasms of skeletal muscle of arms, 
  legs or abdomen 
-Increased body temperature 
-Thirst 
-Sweating 
-Tachycardia 

3. Heat syncope 
-Dizziness 
-Results from inadequate cardiac output and  
  postural hypotension 
-Fainting 
-Tc 40°C  

4. Heat exhaustion  
-Excess sweating 
-Heat cramps 
-Nausea/vomiting 
-Headache 
-Hypotension 
-Tc 40.6 °C  

5. Heat stroke 
-Tc 41°C (hyperpyrexia)  
-Heat exhaustion plus: 
-Dehydration/hemoconcentration 
-Endotoxemia 
-Hyperglycemia 
-Lactic acidosis 
-Cardiovascular abnormalities 
-Increased 
cortisol/corticosterone 
-Renal failure 
-Hepatocellular necrosis 
-Hyperventilation 
-Arrhythmia 
-Multi-organ system failure   1Adapted from Leon, 2007; Aggarwal et al., 2008; and Sanders 2010  

 

Heat Dissipation 

  Under normal physiological conditions metabolic heat production due to 

muscle contractions, biochemical reactions, ion pump activity, etc…is offset by the 

body’s ability to dissipate heat by radiation, convection and conduction (Roth et al., 

2009).  Heat is normally transferred to the atmosphere when ambient temperatures 

are below normal body temperature (i.e. a temperature gradient exists), but when 

ambient temperatures exceed the body’s thermal-neutral zone (i.e. a reverse energy 

gradient), the only heat-loss mechanism is evaporative cooling via sweating (Roth et 

al., 2009).  Generally, heat can be absorbed from the environment (via conduction, 

convection, or radiation) or generated metabolically due to increased growth, 
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feeding, lactation, and other parameters.  On the other hand, heat can be removed 

from the body (via radiation, conduction, convection, or evaporation) by means of 

urination, defecation, and milk removal.  These increments of heat gains/losses are 

balanced within an animal to maintain euthermia (Fuquay, 1981).  Heat stress 

occurs when the body can no longer maintain thermoregulatory homeostasis.   

  In some species such as pigs, rodents, and dogs, panting is the major 

mechanism by which heat is dissipated.  Panting increases respiration rate and 

decreases tidal volume which increases ventilation and evaporation in the oral cavity 

and esophagus (Hales and Webster, 1967).  Some mammals such as horses and 

humans rely on other evaporative mechanisms such as sweating for cooling the core 

temperature (Fuller et al., 2000).  Sweating is a more effective mechanism of heat 

dissipation compared to panting because panting requires muscle contraction which 

in itself produces heat (Fuller et al., 2000).  This has implications for certain species 

and their susceptibility to heat stress.  Pigs have little to no functional sweat glands 

which means they rely almost entirely on panting for heat dissipation (Fuquay, 

1981).  This may help partly explain why pigs are more susceptible to heat 

compared to other species (Patience, 2005). 

 Feed intake  

  Voluntary feed intake is influenced by a number of factors and is very 

sensitive to environmental conditions.  Feed intake in lactating sows decreases 

when the temperature exceeds 22°C (Gourdine et al., 2 006) and heat stress also 

causes decreased milk yield and body weight during lactation (Renaudeau et al., 



www.manaraa.com

14 

 

2001).  Feed intake decreases up to 50% during heat stress and this is often 

considered as the primary reason for negative effects on agriculture production 

parameters (DeShazer et al., 2009).  This decrease in nutrient intake explains a 

majority of weight loss, or lack of weight gain observed in heat-stressed production 

animals (Kouba et al., 2001).  Pigs decrease feed intake to maintain 

thermoregulation as eating and the process of digestion, absorption and assimilation 

increases metabolic heat production.  It is thought that reduced nutrient intake is an 

attempt to offset the effect of environmental heat.  Table 1.4 shows the effects of 

heat stress on feed intake along with severity of heat-load.  

Blood Flow 

  Other physiological responses to heat stress include a redistribution of blood 

flow from the viscera to the skin to aid heat dissipation (Rowell, 1983).  Due to the 

need for heat dissipation as a cooling mechanism, the body re-routes blood to the 

surface of the skin.  Heat stress causes reduced venous pressure, and reduced 

heart, liver, splanchnic and thoracic blood volume.  This diversion of blood to the 

periphery is accompanied by increased cardiac output and this causes decreased 

blood volume (Crandall et al., 2010).  

  Evidence also indicates reduced blood flow to the gastrointestinal tract (GIT) 

during heat stress.  Reduced GIT blood flow can cause tissue hypoxia which 

depletes ATP stores and can potentially cause intracellular acidosis and changes ion 

pump activity (Hall et al., 1999).  Depletion of ATP and acidosis can jeopardize tight 

junctions of the intestinal epithelium and this can result in bacterial and associated 
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endotoxins and pathogens translocation across the membrane and into circulation.  

Heat stress can also cause increased tight junction permeability by increasing 

oxidative stress, and membrane damage.  The result of bacterial translocation can 

lead to severe illness, endotoxemia or death as septicemia is very difficult to treat 

(Lambert, 2009). 

Table 1.4  Effects of heat stress on pig feed intake in varying environmental conditions 
↓DMIa HS Pattern b Max °C  Min °C  Humidity Controlled  Reference  
19% Diurnal 35 27 Yes 1 
15% Constant 29 29 No 2 
30% Constant 31 31 Yes 3 
37% Constant 32 32 No 4 
25% Constant 33 33 No 5 
18% Constant 30.3 30.3 No 6 
49% Constant 29 29 No 7 
21% Constant 40.5 40.5 No 8 
15% Diurnal 35 22.5 Yes 9 
48% Constant 35 35 No 10 

aDry Matter Intake 
bHeat Stress 
1. Becker et al., 1992  
2. Le Bellego et al., 2002 
3. Renaudeau et al., 2007 
4. Spencer et al., 2003 
5. Collin et al., 2001a 
 

6. McGlone et al., 1988 
7. Renaudeau et al., 2001 
8. Kim et al., 2009 
9. Lopez et al., 1991 
10. Collin et al., 2001b 

 

     Gastrointestinal Tract Function   

Intestinal Macronutrient Transport 

  The main functions of the GIT is to aid in the digestion and absorption of 

nutrients as well as maintain immunity and barrier function (Burkey et al., 2009).  

The GIT contains an epithelial barrier which normally prevents passage of unwanted 

luminal contents while allowing passage of ions, nutrients, and water (Yu et al., 
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2010).  The two ways which this occurs are transcellular and paracellular transport.  

Transcellular transport is primarily powered by ATP hydrolysis, while paracellular 

transport involves passive diffusion (Johnson, 2006).  The regulation of passive 

diffusion depends on the ability of tight junctions to allow only beneficial molecules to 

cross, while preventing harmful molecules such as pathogens and bacteria 

(Blikslager et al., 2007). 

  The three major macronutrients (carbohydrates, fatty acids, and amino acids) 

are transported in and out of the intestine by different mechanisms and transporters.  

Animal cells can only transport carbohydrates in the form of monosaccharides so 

complex sugars must first be broken down.  Glucose and galactose are transported 

across the apical membrane of enterocytes in the small intestine via the apical 

Na+/glucose co-transporter (SGLT1) while fructose is transported by the transporter 

GLUT 5 (Shirazi-Beechey et al., 2011).  Glucose transporter GLUT 2 is then 

responsible for moving these simple molecules across the basolateral membrane 

into circulation (Shirazi-Beechey, 1995).   

  Dietary proteins are transported similarly to sugars in that they are broken 

down into amino acids and smaller peptides, both of which depend on active and 

passive transport across the intestinal epithelium (Spencer, 1969).  Sodium-

dependent transporters aid in moving amino acids across the apical membrane 

specific for acidic, neutral, and basic amino acids.  The basolateral side of the 

enterocyte also contains transporters to move amino acids into the blood stream 

(Silk et al., 1985).  Small peptides can also be transported under certain 
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circumstances via the PepT1 transporter.  This transports di- and tri-peptides to the 

enterocyte where they are broken down into free amino acids and exported into 

circulation (Daniel, 2004). 

  Lipids undergo a different process for transport into circulation.  Prior to 

transport and absorption, triglycerides are broken down into monoacylglycerols and 

free fatty acids (FFA).  Fatty acids are then absorbed in the intestine and transported 

across the apical membrane of enterocytes (Mansbach and Gorelick, 2007).  Once 

the fatty acids are in the enterocyte, they travel to the endoplasmic reticulum and are 

re-synthesized into complex triglycerides.  Fatty acids in the enterocyte are 

incorporated into triacylglycerol phospholipids, and cholesteryl esters (Johnson et 

al., 2006).  These new complex molecules are used to synthesize chylomicrons 

which are then transported to peripheral tissues (Iqbal and Mahmood Hussain, 

2009). 

Tight Junctions 

  The intestinal barrier is held together by protein complexes called tight 

junctions.  These junctions seal the perimeters of polarized epithelial cells and form 

a paracellular barrier which aids in absorption and transport (Hossain and Hirata, 

2008).  The claudin proteins as well as occludin are located in tight junctions and 

may be associated with zona occludins (ZO) which act as adaptor proteins (Miyoshi 

and Takai, 2008).  A specific zona occludin, ZO-1 is a protein that is strictly 

associated with tight junctions (Anderson et al., 1988).  Cell adhesion molecules 

associate with peripheral membrane proteins on the plasma membrane via adaptor 
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proteins which attach to the actin cytoskeleton (Anderson and Van Itallie, 2009).  

Actin filaments regulate tight junction barrier and contraction of these filaments 

ultimately leads to tight junction openings, aiding in cell motility and absorption 

(Yang et al., 2007).  Myosin light chain kinase (MLCK) phosphorylates the regulatory 

light chain of type 2 myosin.  Contraction of the actin cytoskeleton is regulated by 

phosphorylation of MLCK (Turner, 2006).  It is thought that increased MLCK may 

initiate intestinal permeability (Yang et al., 2007). 

Intestinal Permeability Measurement 

  Measurements of intestinal barrier function and integrity can be accomplished 

by measuring the membrane resistance.  Epithelia exhibit unique properties such as 

polarity and tightness (Brown and Stow, 1996).  This tightness property can be 

measured as transepithelial electrical resistance (TER) which is generated by 

membrane tight junctions.  A lower resistance indicates higher permeability.  

Epithelial tissues also generate a voltage across the epithelium because these 

tissues transport ions.  Essentially this voltage indicates active transport across the 

membrane similar to how the Na+/K+ pump operates by utilizing ATP to exchange 

ions in and out of a cell (Gordon et al., 1989).  By eliminating osmotic and 

electrochemical gradients, the movement of ions across the membrane is the result 

of active transport (Johnson et al., 2006).  However, Ussing Chambers can measure 

both types of transport.  

  In animal models, macromolecule permeability can also be used to determine 

leaky gut by using fluorescently labeled dextrans such as fluoroisothiocyanate 
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(FITC)-dextrans, FITC-labeled LPS,  (Tomita et al., 2004).  This is done by treating 

these molecules into the mucosal side of intestinal tissue and measuring serosal 

concentration over time.  As the labeled molecule is fluorescent, a 

spectrophotometer can detect concentration based on detection of a fluorescent 

signal.  The final calculated apparent permeability coefficient represents the amount 

of lipopolysaccharide (LPS) or dextran passage through the intestinal epithelium.  

Another more conventional index of barrier function is to measure plasma LPS as 

presence of LPS in the blood indicates passage from the intestine into circulation 

(Lambert, 2009).  

        Metabolism 

Carbohydrate Metabolism 

  Mature swine obtain a majority of their glucose from dietary sources (similar 

to other monogastric species; McMillin, 1990).  Glucose use for ATP production 

occurs by two main processes.  One is the glycolytic pathway and a second is the 

pentose phosphate pathway.  Glycolysis is the major pathway for glucose oxidation 

(80-90%) in most tissues while the pentose phosphate pathway accounts for the 

remaining 10-20% (Wamelink et al., 2008).  Glycolysis converts glucose into two 

pyruvate molecules and generates 2 ATP in the process.  Under normal aerobic 

conditions, glucose is oxidized to CO2 and pyruvate is converted to acetyl CoA 

which enters the Krebs cycle (Berg et al., 2007).  Excess glucose can also stored in 

the form of glycogen (in muscle and hepatic tissue) which can be broken down for 

energy production (Heppner et al., 2010).   
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   Glucose homeostasis is maintained via intestinal glucose absorption, hepatic 

glucose production, as well as glucose uptake and usage by peripheral tissues 

(Scheepers et al., 2004).  The liver regulates glucose metabolism differently 

because it is involved in maintaining glucose homeostasis within the body.  The liver 

is also able to store glucose in the form of glycogen which can be utilized to release 

glucose via glycogenolysis (Berg et al., 2007).  Glucose metabolism is largely 

regulated by the hormones insulin and glucagon as insulin signals a “fed” state and 

inhibits glycogen breakdown while stimulating ATP production (Heppner et al., 

2010).  Glucagon is a pancreatic hormone which primarily is responsible for raising 

blood glucose levels by stimulating glycogenolysis and hepatic gluconeogenssis 

(Baile et al., 1983).  

Lipid Metabolism  

  Adipose tissue is the primary site for fatty acid synthesis in swine and glucose 

is the main carbon source for lipogenesis in porcine adipose tissue (Houpt et al., 

1979).  Sources of NADPH for biosynthesis of fatty acids come from the pentose 

phosphate pathway (Berg, 2007).  The amount of triglycerides stored in adipose 

tissue depends on the balance between de novo fatty acid synthesis, fatty acid 

uptake, esterification, and lipolysis (Chilliard, 1993).  Key enzymes involved in de 

novo fatty acid synthesis include acetyl Co-A carboxylase, fatty acid synthase (FAS), 

glucose-6-phosphate dehydrogenase (G-6-PDH), and glycerol-3-phosphate 

dehydrogenase (G-3-PDH; Zhao et al., 2010).   

  Release of adipocyte non-esterified fatty acids (NEFA) occurs as the result of 
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adipose tissue lipolysis and re-esterification (Chilliard, 1993).  Endothelial lipoprotein 

lipase is an important enzyme which hydrolyzes circulating triglycerides in 

chylomicrons and VLDL and converts them into LDL and free fatty acids which are 

available for tissue uptake (Zhao et al., 2010).  Hormone sensitive-lipase is the intra-

adipocyte key enzyme involved in lipolysis as it functions to hydrolyze the first fatty 

acid from a triacylglycerol, freeing one fatty acid and a diacylglycerol (Berg et al., 

2007). 

Protein Metabolism 

  Dietary amino acids are used to synthesize protein for muscle growth, 

membrane glycoproteins, and act as precursors for synthesis of DNA/RNA, and 

enzymes involved in numerous biochemical processes (Young, 1976).  Protein 

synthesis is in part regulated by the amount of amino acids and ATP available.  

Protein biosynthesis occurs in a multistep process after transcription initiation.  

Messenger RNA contains a code for specific polypeptide sequences and acts as a 

template for synthesis of amino acid chains at the ribosome.  This ultimately leads to 

formation of a complex protein structure (Berg et al., 2007).  The liver catabolizes 

amino acids to incorporate into protein which supplies peripheral tissues (Bergen, 

1974).  Protein turnover is the balance between protein anabolism and catabolism.  

Anabolism occurs as amino acids from the diet are incorporated into proteins, or bio-

synthesized in the body.  Catabolism occurs via cell breakdown to create amino 

groups which synthesize urea, further protein synthesis, or carbon skeletons for 

synthesis of fatty acids or glucose.  Nitrogen excretion can be an estimate of protein 
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balance as nitrogen is excreted during protein catabolism or recycling (Berg et al., 

2007).   

Insulin  

  Insulin decreases blood glucose concentrations primarily by increasing 

glucose uptake in adipose tissue and muscle (Heppner et al., 2010).  In muscle and 

adipose tissue, insulin signaling causes the glucose transporter GLUT 4 to 

translocate to the plasma membrane where it facilitates glucose uptake (Hadley, 

2000).  In muscle, it affects protein metabolism by increasing the synthesis of 

proteins while at the same time decreasing protein breakdown (Hadley, 2000).  

Insulin facilitates glucose storage as glycogen in the liver while inhibiting 

gluconeogenesis.  In adipose tissue, insulin stimulates lipoprotein lipase, in order to 

hydrolyze lipoprotein triglycerides and allow NEFA’s to enter the adipocyte.  Overall, 

insulin acts anabolically to divert nutrients to muscle and adipose tissue for synthesis 

(Brockman, 1986).  Figure 1.1 summarizes insulin’s effect on metabolism. 

       

Figure 1.1 Partial list of insulin’s effects on whole body metabolism in a healthy 

animal. 
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AMP-Activated Kinase 

  AMP-activated Kinase (AMPK) is the primary gauge of cellular energy 

requirements (Hardie, 2008) and is activated when AMP levels increase (i.e. energy 

status is low).  It then acts to inhibit enzymes involved in ATP-requiring reactions in 

order to conserve cellular energy (Kemp et al., 1999).  When AMPK is activated, 

fatty acid oxidation and glucose uptake are stimulated (Goodyear and Kahn, 1998).  

In the cell, AMPK can exist in a T state (less active) and an R state (more active) but 

also exists as dephospho-AMPK and phospho-AMPK indicating that overall AMPK 

can exist in four forms (Hardie and Carling, 1997).  Phosphorylation by upstream 

kinases activates AMPK by phosphorylating the α subunit at Thr-172 (Kemp et al., 

2003).  Conversely, AMPK is deactivated upon dephosphorylation (Steinberg and 

Kemp, 2009).  The liver is largely unaffected by changes in AMPK concentrations, 

because ATP concentrations in the liver remain relatively constant (Viollet et al., 

2009).  Only severe stress stimuli such as intensive exercise or fasting can cause 

hepatic ATP levels to decrease (Hardie, 2004).  In the case that AMPK is activated 

in the liver, glucose output can be inhibited (Zhou et al., 2001). 

 Na+/K+ ATPase  

  The sodium potassium pump is essential for all animal cells because it is 

primarily responsible for maintaining cellular ion balance.  This ATPase is in the 

family of P-type ATPases which generate a charge gradient across the membrane 

(Morth et al., 2011).  The Na+/K+ ATPase pumps three Na+ ions out of, and two K+ 

ions into the cell while hydrolyzing one ATP and is necessary for maintaining cell 
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osmolarity  (Bers and Despa, 2009).  Skeletal muscle contains a large K+ and Na+ 

pool, thus it can easily cause changes in plasma ion concentrations (Benziane and 

Chibalin, 2008).  Due to this, muscle contains a large amount of Na+/K+ pumps 

(Clausen, 2010).  In the intestine, the Na+/K+ pump moves Na+ into the blood and 

this creates an intracellular gradient which allows for transport of glucose and amino 

acids (Cant et al., 1996).  Adrenaline can affect Na+/K+ transport as epinephrine 

binds β-receptors which activate adenylate cyclase, thus increasing intracellular 

cyclic AMP concentration.  Then cyclic AMP activates protein kinase A which 

phosphorylates a subunit of the Na+/K+ ATPase pump leading to an increased 

affinity for Na+ and increased extracellular K+ (Clausen, 2010). 

    Heat Stress Effects on Gastrointestinal Tract  

Measures of intestinal permeability 

  Elevated body temperatures can damage the intestinal epithelial barrier and 

increase permeability to toxins such as endotoxins or LPS (Lambert, 2009).  Heat 

stress effects on intestinal permeability have been studied on a number of models 

including humans, primates, in vitro, and rodents.  Temperature exceeding 41°C 

cause a marked decrease in transepithelial resistance (TER) in Caco-2 cell lines 

which correlated with a direct increase in paracellular permeability (Dokladny et al., 

2006).  These results were also observed in a rodent model of heat stress at a core 

temperature of 41.5°C where TER decreased 60% below baseline after heat stress 

(Prosser et al., 2004).  Increased permeability to a FITC-labeled dextran has been 

detected at core temperatures of 42.5°C in rats (Lamb ert, 2002).  Similarly, rats 
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heated to 42°C for 30 minutes exhibited an increase in  FITC-Dextran 24 h post 

hyperthermia (Singleton and Wischmeyer, 2006).  Yang and colleagues (2007) 

found a decrease in TER in T84 monolayer cells at 41 and 43°C.  This group also 

found a 3-fold increase in horseradish peroxidase (HRP) flux indicating increased 

permeability at 43°C.   

Table 1.5  Effects of heat stress on intestinal morphology measures in various species 
Species  Villous Height  Crypt Depth  Reference  
Pigs Decreased Decreased 1 
Pigs Decreased Decreased 2 
Chickens No Change No change 3 
Quails Decrease N/A 4 
Rats Decrease Decrease 5 
Fowl Decrease N/A 6 
Pigs No change No change 7 
1. Yu et al., 2010 
2. Liu et al., 2009 
3. Quinteiro-Filho et al., 2010 
4. Sandikci et al., 2004 
 

5. Sengupta and Sharma, 1993 
6. Mitchell and Carlisle, 1992 
7. Song et al., 2011 

 

Tight Junction Proteins  

  Little data is available regarding how or if heat stress effects tight junction 

protein expression.  Early studies indicated that heat stress decreased ZO-1 protein 

expression while occludin expression was increased at 41°C in Caco-2 cell lines and 

this indicates some dysfunction of intestinal barrier proteins (Dokladny et al., 2006, 

2008).  The increase in occludin expression was blunted when cells were heated 

and given a heat-shock protein inhibitor (Dokladny et al., 2006).  This suggests that 

heat-shock proteins may be necessary for up-regulation of occludin.  In T84 

monolayer cells, temperatures of 41 and 43°C caused upre gulation of myosin light 

chain kinase (MLCK), correlating with an increase in permeability (Yang et al., 
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2007).  Despite little information available regarding expression, physiological 

changes in morphology have been determined using another method.  Tight 

junctions have been analyzed via transmission electron microscopy in rat jejunum 

after 90 min of heat stress at temperatures varying from 41-42.5°C.  Results indicate 

that tight junctions were intact and not damaged by increased temperatures; but 

confounding variables may have affected these results (Lambert et al., 2002).  

Intestinal morphology has been shown to change during heat stress in pigs (Liu et 

al., 2009; Yu et al., 2010).  Table 1.5 shows the effects of heat stress on intestinal 

morphology. 

Circulating Endotoxin 

  It is hypothesized that heat stress increases circulating endotoxin 

concentrations in a variety of species (Lambert, 2009).  One study indicated that 

differences in endotoxemia following heat stress were not observed in heat-stressed 

rodents however an increase in gram negative bacteria in duodenal samples was 

detected, indicating some bacterial movement (DuBose et al., 1983).  In other rat 

models, portal blood LPS concentration increased at temperatures of 41.5°C (Hall et 

al., 2001).  Similarly, Singleton and Wischmeyer (2006) found elevated plasma LPS 

concentrations in anesthetized rats 24 h post hyperthermia.  Increased plasma LPS 

levels have also been detected in classical heat-stroke patients and this was 

correlated with an increase in core temperature.  Even after patients were cooled, 

LPS concentrations remained elevated above controls, indicating some level of 

intestinal permeability may remain for a longer period of time (Bouchama et al., 
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1991).  Endotoxin has been found to enter circulation at core temperatures at or 

above 40°C and concentration of LPS in the circulation  increases with increased 

core temperature (Gathiram et al., 1988).  Table 1.6 shows a list of species where 

leaky-gut is induced during heat stress. 

Table 1.6  Effects of heat stress on intestinal permeability in various species 
Species  Technique  Response  Reference  
Rats Plasma LPSa Increase 1,7,10 
Humans Plasma LPS Increase 2 
Primates Plasma LPS Increase 3 
Dairy Goats Plasma LPS Increase 8 
Chickens Plasma LPS Increase 11 
Rats Ussing Chambers - TERb Decrease 4 
Caco-2 Cells Ussing Chambers - TER Decrease 5 
Rats Ussing Chambers - FITCc 

Dextran 
Increase 6,7 

T84 Cells Ussing Chambers - TER Decrease 9 
T84 Cells Ussing Chambers - HRPd flux Increase 9 
aLipopolysaccharide 
bTrans-epithelial Electrical Resistance 
cFluorescein Isothiocyanate-labeled Dextran 
dHorseradish Peroxidase 
 1. Hall et al., 2001 
2. Bouchama et al., 1991 
3. Gathiram et al., 1988 
4. Prosser et al., 2004 
5. Dokladny et al., 2006 
6. Lambert, 2002 
 

7. Singleton and Wischmeyer, 2006 
8. Wang et al., 2010 
9. Yang et al., 2007 
10. Lim et al., 2007 
11. Cronje, 2007 

     

          Heat Stress Effects on Metabolism  

Insulin 

  Studies on insulin and hyperthermia are relatively recent but demonstrate 

interesting and perplexing results.  Heat stress affects the insulin response in a 

unique way compared to other types of physical stress.  Under most stress 

conditions, catecholamine production (such as epinephrine) inhibits insulin release 
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(Katsuhiko et al., 1982) in order to increase gluconeogenesis/glycogenolysis (to 

provide glucose for extra-hepatic tissues), and adipose tissue lipolysis (to provide 

fatty acids for skeletal muscle) to meet energy requirements (Brockman, 1986).  

However, during a stressful heat-load, insulin is actually increased in most species, 

including a model of porcine malignant hyperthermia (Hall et al., 1980), rodents (Doi 

et al., 1982), and cows (Wheelock et al., 2010; O’Brien et al., 2010) despite a 

decrease in feed intake, reduction in blood glucose, loss of body weight and 

decrease in a calculated energy balance.  In addition, the insulin response to a 

glucose bolus during heat stress is not altered compared to a thermal-neutral 

environment although the response is weaker in a pair-fed thermal neutral model 

(Itoh et al., 1998; O’Brien et al., 2010; Rhoads et al., 2010).  Glucagon is also 

decreased in malignant hyperthermic pigs (Hall et al., 1980) and this also leads to 

decreased availability of glucose and lipids for energy production.  In a porcine 

model of endotoxemia (another type of stressor), insulin infusion decreased plasma 

glucagon and TNF-α suggesting that insulin may have anti-inflammatory effects 

(Brix-Christensen et al., 2004).  

   Interestingly, it appears that the immune system influences parameters of 

glucose homeostasis.  For example, despite reduced feed intake, experimentally 

induced mastitic cows have increased circulating insulin levels (Waldron et al., 

2006).  In addition, LPS IV infused steers have immediate and extreme 

hyperinsulinemia (i.e. > 30 fold; Rhoads et al., 2009b) and this occurs with only a 

mild decrease in plasma glucose levels.  As a consequence, it appears that heat-
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induced leaky-gut may be mediating some of the inexplicable changes in post-

absorptive metabolism (Baumgard and Rhoads, 2011). 

Glucose Metabolism 

  Heat-stroke patients often experience hyperglycemia which could indicate an 

increase in glucose production, or a decrease in tissue uptake (Al-harthi et al., 

1990).  This has also been observed in a porcine model of terminal heat stress 

(Marple et al., 1974).  The increase in production may come from an increase in 

glycogenolysis and/or gluconeogenesis (Rowel et al., 1968).  It has been 

demonstrated that during an increased heat-load, dietary carbohydrates are not able 

to reduce glucose production by the liver (Angus et al., 2001) and hepatic glucose 

production increases (Fink et al., 1975).  An increase in glycogen utilization may be 

due to enhanced anaerobic metabolism as lactate accumulation occurs in the 

muscle of heat-stressed humans (Young et al., 1985).  Heat stress effects on blood 

glucose are not entirely conclusive as decreases in blood glucose levels have been 

observed in a variety of species including rats (Mitev et al., 2005), ruminants 

(O’Brien, et al., 2010) and chickens (Rahimi, 2005).  The reasons for the 

inconsistencies may be due to the type of experimental model, plane of nutrition, 

and timing/severity of heat stress. 

Lipid Metabolism 

  Stress hormones such as epinephrine normally induce lipolysis and increase 

circulating NEFA concentrations.  Catecholamines are lipolytic and also inhibit 

insulin (Carey, 1998).  However, during heat stress, mobilization of adipose tissue is 
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not observed in a number of species including malignant hyperthermic pigs, cows 

and rodents (Frascella et al., 1972; Hall et al., 1980; Rhoads et al, 2009a).  In a 

porcine model of terminal heat stress, animals exhibited an increase in NEFA 

concentrations; however this model represented a severely acute bout of heat stress 

(Marple et al., 1974). 

   Heat stress also decreases fatty acid oxidation in humans (Jentjens et al., 

2002).  A heat load seems to favor retention of body fat as heat-stressed piglets 

have a greater percentage of body fat compared to piglets in thermal neutral 

conditions (Collin et al., 2001a).  It is interesting to note the relationship between 

carbohydrate and lipid metabolism during heat stress.  Oxidizing fatty acids are less 

efficient at producing ATP (~13% less) than that of glucose (Baumgard et al., 2007) 

which may help explain why more carbohydrates are utilized and adipose tissue is 

not mobilized during a heat-load.  

Protein Metabolism 

  Protein metabolism is affected by heat stress as muscle breakdown may 

occur.  Tissue break down causes an increase in blood urea nitrogen (BUN) levels 

and this is often used as an indicator of muscle catabolism.  Other indicators of 

muscle breakdown include increased plasma Nt-methylhistidine, creatinine, and 

creatine.  Increases in these parameters have been observed previously during a 

heat-load in humans (Febbraio, 2001), poultry (Yunianto et al., 1997), and cows 

(Kamiya et al., 2006).  Heat-stressed pigs also have an increase in plasma creatine 

kinase (CK) which is a measure of protein breakdown (Aberle et al., 1974) as it 
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converts creatine and ATP to phosphocreatine and ADP.  As insulin promotes 

protein accretion (Allen, 1988), it is interesting that protein catabolism is increased 

during a heat-load.  Reasons for this are not clear however some hypothesize that 

protein is broken down in order for the liver to utilize the carbon in amino acids for 

gluconeogenesis (Brockman, 1986).  Table 1.7 summarizes the effects of heat 

stress on various plasma metabolites mentioned in this chapter.  

AMP-Activated Kinase (AMPK) 

  AMPK may be especially sensitive to heat stress as this type of stress 

increases ATP requirements while at the same time decreasing ATP production via 

oxidative phosphorylation (Corton et al., 1994).  In skeletal muscle, AMPK can be 

activated by muscle contraction which decreases the ATP/AMP ratio by utilizing 

available ATP for the contraction cycle (Rasmussen et al., 1998).  In rodents, AMPK 

was differentially regulated in muscle as it increased in type 1 skeletal muscle but 

decreased in type 2, perhaps indicating that one type of muscle may be more 

affected by heat stress (Sanders, 2010).  Also in rodents, liver AMPK remained 

unchanged, indicating the liver’s ability to compensate for increased energy 

demands (Sanders, 2010).  Heat stress has also been shown to increase tissue 

hypoxia and oxidative stress (Sato et al., 1991) and these physiological states also 

increase cellular AMPK concentrations (Mu et al., 2001; Fryer et al., 2002).  

Therefore, although direct studies of heat-stress effects on AMPK are difficult to find, 

comparisons may be made by observing secondary effects.  
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 Na+/K+ ATPase  

  Very little research has been conducted regarding how heat stress affects 

Na+/K+ ATPase pump activity (Francesconi et al., 1997).  One of few known studies 

in heat-stressed broiler chickens produced a significantly higher sodium pump 

activity in kidney and brain tissue but total ATPase activity (including all pumps) was 

inhibited (Chen et al., 1994).  Other related stress types such as exercise, and 

elevated thyroid hormone lead to increased pump activity in humans (Benziane and 

Chibalin, 2008).  Increased thyroid hormone has been correlated specifically with 

increased active Na+/K+ transport in human skeletal muscle (Iannello et al., 2007).  

Oxidative stress which has been associated with an increased heat-load (Ozturk and 

Gumuslu, 2004) may decrease sodium pump activity.  In ox brain, gerbil brain, and 

dog kidney, H2O2 infusion induced a decrease in pump activity, which was 

associated with an increase in reactive oxygen species (ROS) (Dobrota et al., 1999). 
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Table 1.7 aThe effects of heat stress on plasma metabolites in various species 
Metabolite Species Response Reference 
Glucose Humans Increase 1, 27, 28 
 Rats Decrease 2 

 Rats Increase 16, 26 

 Pigs Increase 3,4  

 Chickens Decrease 5 

 Cows Decrease 6, 7, 8, 9, 10 

Insulin Cows Increase 10 

 Pigs Increase 3 

 Rats Increase 25 

 Steer Increase 11 

 Humans No change 12 

LPSb Rats Increase 13 

 Humans Increase 14 

 Primates Increase 15 

NEFAc Rats Decrease 16, 17, 18 

 Chickens Fluctuates 19 

 Pigs Decrease 2 

 Sheep Decrease 20 

 Cows Decrease 6, 7, 9, 10, 20, 21 

BUNd Cows Increase 10,11 

 Humans Increase 23 

Cholesterol Cows Decrease 8, 22 

 Humans Unchanged 24 
aAdapted from: Wheelock 2008; Sanders 2010   
bLipopolysaccharide 

cNon-esterified fatty acids   
dBlood urea nitrogen 

1. Febbraio, 2001 
2. Mitev et al., 2005 
3. Hall et al., 1980 
4. Prunier et al., 1997 
5. Yalcin et al., 2009 
6. Rhoads et al., 2007 
7. Rhoads et al., 2009a 
8. Shehab-El-Deen et al., 2010 
9. Shwartz et al., 2009 
10. Wheelock et al., 2010 
11. O’Brien et al., 2010 
12. Kappel et al., 1997 
13. Hall et al., 2001 
14. Bouchama et al., 1991 

15. Gathiram et al., 1988 
16. Frascella et al., 1977 
17. Burger et al., 1972 
18. Frankel, 1968 
19. Bobek et al., 1997 
20. Sano et al., 1983 
21. Abeni et al., 2007 
22. Fuquay, 1981 
23. Fukumoto et al., 1988 
24. Francesconi et al., 1976 
25. Torlinska et al., 1987 
26. Simon, 1953 
27. Monteleone and Keefe, 1969 
28. Al-harthi et al., 1990 
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          Heat Stress Effects on Cytokines  

  Cytokines are chemical messengers primarily released by macrophages, T 

and B cells, as well as other immune cells (Kelker et al., 1985).  These messengers 

can be either pro- or anti-inflammatory, and both types may be activated in the 

presence of heat-stroke.  Bacterial infections, as well as heat stress or other types of 

physiological stress can induce cytokine release (Bouchama et al., 1991; Drexler, 

1995).  A few major cytokines found to be associated with heat-stroke are: IL-1β, IL-

6, IL-10, IFNγ, and TNFα.  These cytokines are commonly elevated in patients 

admitted to hospitals with heat-stroke symptoms (Leon, 2007).  Increased 

concentrations of IL-6 tend to be correlated with elevated mortality rates and IFNγ in 

serum is increased in over 50% of heat-stroke patients (Bouchama et al., 1993).  

  Cytokines also pay a role in gut permeability during times of increased stress. 

Increased permeability occurs due to elevated nitric oxide levels induced by cytokine 

stimulation.  As mentioned previously, “leaky” gut leads to increased endotoxin 

concentrations in the blood and this elicits an immune response, thus releasing 

cytokines (Yan et al., 2006).  These cytokines induce fever, or may actually cause 

hypothermia in the CNS.  In the periphery, cytokine release causes systemic 

inflammation, leading to multi-organ damage, organ failure, and ultimately death 

(Leon, 2007). 
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CHAPTER 2 
THE EFFECTS OF HEAT STRESS AND NUTRITIONAL STATUS O N 

METABOLISM IN GROWING PIGS 

Abstract 

  Heat stress (HS) negatively affects pig performance variables and is thus a 

costly industry issue.  However, whether HS directly or indirectly (via reduced feed 

intake) is responsible for the suboptimal production is not known.  Crossbred gilts 

(n=48; 35±4 kg BW) were housed in constant climate controlled rooms in individual 

pens and exposed to 1) thermal neutral (TN) conditions (20°C; 35-50% humidity) 

with ad libitum intake (n=18), 2) HS conditions (35°C; 20-35% humidity) with ad 

libitum intake (n=24) or 3) pair-fed (PF in TN conditions [PFTN], n=6: to eliminate 

confounding effects of dissimilar feed intake[FI]) and sacrificed at 1, 3, or 7 d of 

environmental exposure.  Individual rectal temperature (Tr), skin temperature (Ts), 

respiration rates (RR) and FI were determined daily.  Pigs exposed to HS had an 

increase (P<0.01) in Tr (39.3 vs. 40.8°C) and a doubling in RR (54 vs.107 bpm ).  HS 

pigs had an immediate (d 1) decrease (47%; P<0.05) in FI which continued through 

d 7; by design the PFTN controls nutrient intake pattern mirrored the HS group.  TN 

pigs had 1.14 kg BW ADG throughout the experiment, while HS pigs lost 2.7 kg BW 

after 1 d but had gained 0.3 and 1.65 kg on d 3 and 7, respectively.  By d 7, PFTN 

pigs had lost 2.47 kg BW.  HS pigs had reduced (8.9%; P<0.05) plasma glucose 

compared to TN pigs.  BUN concentrations were elevated (36%; P<0.05) in HS pigs 

after 24 h but return to TN control levels by d 3.  Plasma cholesterol increased 

(P<0.05) in HS pigs at 24 h (25%) and d 3 (22%) but were similar to TN and PFTN 

pigs by d 7.  HS pigs had an immediate and sustained increase (50%; P<0.05) in 
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plasma creatinine compared to both TN and PFTN controls.  Plasma alkaline 

phosphatase (ALK) was progressively decreased (P<0.05) during HS, and was 50% 

lower in HS compared to TN and PFTN pigs on d 7.  HS pigs had a 24 h increase 

(67%; P<0.01) in plasma NEFA levels compared to TN pigs, but NEFA levels were 

similar to TN pigs on d 3 and 7.  PFTN pigs on d 7 had increased (110%; P<0.05) 

NEFA concentrations.  Plasma insulin was increased (49%; P<0.05) in d 7 HS pigs 

PFTN controls.  HS pigs tended (P<0.11) to have increased FAS activity compared 

to PFTN pigs.  G6PDH activity decreased (P<0.05) in HS pigs compared to TN and 

PFTN pigs.  Irrespective of day, HS pigs tended (P=0.06) to have increased LD 

Na+/K+ ATPase activity (52%).  Liver Na+/K+ ATPase activity was not different 

between the TN and HS pigs, however, PFTN pigs had decreased pump activity 

compared to the HS and TN pigs (23%; P=0.06).     

             Introduction 

  While the causes remain debatable, there is little doubt global warming is 

occurring (Bernabucci et al., 2010).  In fact, ambient temperatures in North America 

are predicted to raise 2-3°C by 2100 (Luber and McGee hin, 2008).  Humans and 

animals are sensitive to increasing temperatures and can become ill or even die due 

to heat stress related illnesses.  For example, in 2003 more than 50,000 Europeans 

died during a two week heat-wave (Kosatsky, 2005; Patz et al., 2005) and human 

mortality is likely to increase as global warming continues and the occurrence and 

severity of heat-waves become more frequent (Hayhoe et al., 2004). 

  Animal agriculture is also severely affected by heat stress as the United 
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States swine industry loses over $300 million annually and global loses are in the 

billions (St-Pierre et al., 2003).  The heat-induced economic burden is due to 

increased morbidity, mortality, suboptimal growth, inefficient nutrient utilization, poor 

sow performance, decreased carcass value and carcass processing problems (St-

Pierre et al., 2003).  The deleterious effects of climate change on pig production 

variables are likely to increase in the future as genetic selection for lean tissue 

accretion enhances the animal’s sensitivity to heat stress (Nienaber and Hahn, 

2007).  Consequently, climate change threatens the global protein food supply chain 

and compromises the competiveness of the US hog industry (Godfray et al., 2010).  

  A prerequisite to developing mitigation strategies to reduce heat-related 

human illness/death and maximize animal performance during the warm summer 

months, is a better understanding of how environmental-induced hyperthermia 

affects post-absorptive metabolism and nutrient partitioning.  Heat-stressed animals 

decrease feed intake (presumably to minimize heat production) and prior research 

suggests this nutrient intake reduction is responsible for decreased pig performance 

parameters (DeShazer et al., 2009).  However, post-absorptive changes in nutrient 

partitioning in some heat-stressed models do not reflect normal metabolic changes 

observed in thermal neutral animals on a similar plane of nutrition.  For example, 

despite marked reductions in nutrient intake, heat-stressed ruminants have 

increased basal and stimulated circulating insulin concentrations (Itoh et al., 1998; 

O’Brien et al., 2010; Wheelock et al., 2010).  The altered insulin variables may also 

explain why heat-stressed animals do not mobilize adipose tissue triglycerides 
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despite being in a catabolic state (Rhoads et al., 2009a; Shwartz et al., 2009; 

O’Brien et al., 2010).  Insulin and effective insulin action appears to play a key role in 

the heat stress response and this is seemingly conserved amongst species.  For 

example, rodent data suggests that experimental-induced diabetics are more 

sensitive to heat stress and exogenous insulin increases survival time during a 

severe thermal load (Niu et al., 2003; Najemnikova et al., 2007).  In addition, diabetic 

humans have a higher risk of suffering from heat-related illnesses (Shuman, 1972; 

Semenza et al., 1999; Shendell et al., 2010).  The changes in insulin action may 

explain why growing rodents (Schmidt and Widdowson, 1967; Katsumata et al., 

1990), poultry (Geraert et al., 1996; Yunianto et al., 1997) and pigs (Heath et al., 

1983; Nienaber et al., 1987; LeBellego et al., 2002) have more carcass lipid (insulin 

is a potent lipogenic stimulant) than their thermal neutral contemporaries. 

  Much of the heat stress research has been conducted on rodent, poultry, and 

ruminant models (Doi et al., 1982; Yalcin et al., 2009; Rhoads et al., 2009a) and less 

is known about how heat stress affects metabolism in humans and swine.  Pigs are 

an agriculturally important species and are frequently used as a model for humans.  

Pigs and humans share many similarities including: body weight, digestive tract 

physiology (Guilloteau et al., 2010), cardiovascular system, renal morphology (Miller 

and Ullrey, 1987) and both have a substantial amount of subcutaneous adipose 

tissue.  However, a key difference (with regards to heat stress) between the two 

species is the mechanism of heat dissipation.  Pigs have little or no functional sweat 

glands, thus rely heavily upon convection and panting for heat dissipation (Curtis, 
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1983), while humans are effective sweaters and rely primarily on evaporative cooling 

(Glazer, 2005).   

  Study objectives were to metabolically characterize a porcine model of heat 

stress and differentiate between the direct and indirect effects (mediated by reduced 

nutrient intake) of a thermal load on production parameters and post-absorptive 

metabolism in growing pigs.  We hypothesized that heat directly (independent of 

reduced nutrient intake) effects post-absorptive metabolism and this altered 

energetic homeostasis may explain the phenotypic change observed (increased 

carcass lipid) in heat-stressed animals.  

Materials and Methods 

Animals and Treatment 

  Iowa State University Institutional Animal Care and Use Committee approved 

all procedures involving animals.  Female crossbred gilts (n = 48, 35 ± 4 kg BW) 

were selected by body weight and housed in individual pens (with individual feeders 

and waters) in one of two rooms (24 pens/room) at thermal-neutral conditions.  

Animals were allowed to acclimate to their environment for 5 d at the Iowa State 

University Swine Nutrition farm prior to start of the experiment.  Pigs were assigned 

to one of three environmental treatments: 1) thermal-neutral (TN) conditions (20°C; 

35-50% relative humidity)  with ad libitum feed intake, 2) heat stress (HS) conditions 

(35°C; 20-35% relative humidity) with ad libitum in take or 3) TN conditions but pair-

fed (PFTN) to mirror the nutrient intake of the HS pigs.  To evaluate the temporal 

response to environment, pigs in the TN (n=18) and HS (n=24) conditions were 
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sacrificed at 1, 3 and 7 d post initiation of environment treatment.  The PFTN pigs 

(n=6) were only sacrificed at 7 d post initiation of nutrient restriction. 

  After environmental initiation, reduced feed intake in the HS pigs was 

calculated daily based on the percentage decrease from each animal’s average feed 

intake prior to HS; the amount offered to PFTN pigs was reduced by that amount.  

The PFTN group lagged one day behind the 7 d heat stress pigs in order to calculate 

and implement feed intake reductions.  Pair-feeding was used to eliminate 

confounding effects of dissimilar feed and nutrient intake.  Individual animal feed 

intake was determined daily at 0800 h.  Pair-fed pigs were fed calculated amounts 

thrice daily at (0700, 1200, and 2000 h) in an attempt to reduce large post-prandial 

shifts in carbohydrate and lipid metabolism.   

  Regardless of environmental treatment, all animals were fed the same diet 

throughout the duration of the experiment.  Samples were analyzed at the University 

of Missouri Agricultural Experiment Station Chemical Laboratories.  Feed was 

analyzed in duplicate for proximates of crude protein (LECO), crude fat, moisture, 

ash, and crude fiber.  A standard protein hydrolysate package for amino acid 

analysis of: Asp, Thr, Ser, Glu, Pro, Gly, Ala, Met, Val, Ile, Leu, Tyr, Phe, His, Lys, 

Arg was also performed (Table 2.1). 
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Table 2.1  Ingredients (DM basis) and chemical composition of diet 
Ingredient % DM kcal 
Corn 61.65 1555 
Soy Bean Meal 20.65 1536 
Dried Distillers Grains (DDGS) 15.00 1552 
HOI-45-30a 2.15 778 
MonCal21% 0.33  
Lysine  0.11  
Methionine 0.03  
Threonine 0.03  
Copper 0.05  
Chemical Analyses, W/W%   
Aspartic Acid 1.73  
Serine 0.81  
Glutamic Acid 3.19  
Proline 1.10  
Glycine 0.76  
Alanine 1.02  
Valine 0.89  
Isoleucine 0.76  
Leucine 1.72  
Tyrosine 0.64  
Phenylalanine 0.92  
Histidine 0.49  
Arginine 1.14  
Crude Protein 17.51  
Moisture 10.89  
Crude Fat 3.68  
Ash 4.39  
aVitamin Pre-mix 

 

  Each room’s temperature and humidity were monitored by a data recorder 

(Lascar® model EL-USB-2-LCD, Erie, PA) which recorded environmental data every 

30 min.  Each room’s ambient temperature was controlled but humidity was not 

governed.  All pigs were monitored continuously for signs of distress.  Body 

temperature parameters were obtained four times daily (0800, 1200, 1600, and 2000 

h).  Rectal temperatures were recorded with a digital thermometer (Top care®, 

Waukegan, IL), skin temperatures at the shoulder and ham were recorded with an 
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infrared temperature gun (Extech® instruments Model 42505, Waltham, MA) and 

respiration rates (breaths/min) calculated with a stopwatch.  Carcass stored heat 

was calculated by:  Tr°C x specific heat of tiss (0.8°C) x BW (kg) as previously 

described by (Silanikove, 2000).  Heat-stressed pigs were removed from the room 

and cooled down with cool water if rectal temperature exceeded 41.0°C (105.8°F).  

Cooling time was standardized at 10 min, at which point the animals were returned 

to their respective pens.  There were not sufficient data to conduct statistical 

analysis at 1600 h for daily body temperatures. 

  Body weights were recorded on all animals at the beginning of the experiment 

and immediately preceding sacrifice.  Jugular vein blood was obtained (10 mL BD® 

vacutainers containing 143 U.S.P units of sodium heparin) while the animals was 

nose-snared and immediately sacrificed using the captive bolt technique followed by 

exsanguination.  Blood was also obtained after sacrifice from the hepatic portal vein 

(using a 22G 5 mL syringe; BD® LEUR-LOK™, Franklin Lakes, NJ) and placed into 

sodium heparin vacutainers.  Blood harvested from the jugular and hepatic portal 

vein was centrifuged at 1300 x g to obtain plasma, alliquotted into five 1.5 mL 

microcentrifuge tubes and stored at -20°C for later an alysis.  

  All tissues were harvested within 12 min of death and included: muscle 

(longissimus dorsi, psoas major, red and white semitendinosus), liver (left lobe and 

caudette lobe), pancreas and adipose tissue from the nape of the neck.  Tissue 

samples were snap-frozen in liquid nitrogen and stored at -80°C until later analyses.   
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Total Protein Determination  

  Total protein concentration of all tissues and plasma was measured for 

various lab analyses and concentration was determined in triplicate using a 

commercially available assay kit (Pierce® BCA microplate protein assay kit, Pierce, 

Rockford, IL).  Bovine serum albumin (BSA) and MQ H2O combinations were used 

as standards and samples were analyzed in triplicate.  After addition of standards, 

MQ H2O was added to all non-standard wells and then samples were vortexed and 

added to the plate.  Finally, 160 µL of the working color reagent (50 parts Solution A 

to 1 part Solution B) was added to all wells.  The plate was incubated for 1 h at room 

temperature and then read at 562 nm using a Synergy 4 microplate reader (Bio-Tek, 

Winooski, VT).  Specific dilutions and sample quantities for each tissue will be 

mentioned along with their related analysis in later sections.  

Metabolite Assays 

  Blood obtained from the jugular vein prior to sacrifice was centrifuged and 

one plasma aliquot was analyzed at the Iowa State Veterinary Diagnostic Laboratory 

for a routine blood panel (large animal complete panel consisting of blood urea 

nitrogen, creatinine, glucose, total protein, albumin, creatine kinase, aspartate 

aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total bilirubin, 

calcium, phosphorus, magnesium, sodium, potassium, chloride, and total carbon 

dioxide) as well as triglycerides, cholesterol and non-esterified fatty acids.  All 

plasma samples were analyzed on a Vitros® 5.1 FS chemistry analyzer (Ortho 

Clinical Diagnostics, Rochester, NY) which simultaneously measures plasma 
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samples in duplicate for all the aforementioned diagnostic tests. 

   Plasma insulin concentrations were determined enzymatically using a 

commercially available kit validated for use in our laboratory.  Plasma samples were 

analyzed in duplicate using an ELISA kit solid phase two-site enzyme immunoassay 

based on the sandwich technique, (Mercodia Porcine Insulin ELISA, ALPCO 

Diagnostics, Salem, NH).  The assay contained 5 calibrators as well as internal 

serum pools with low, intermediate, and high porcine insulin concentrations.  The 

assay was conducted in 96-well microplates and read at 450 nm using a Synergy 4 

microplate reader (Bio-Tek, Winooski, VT).  Inter- and intra-assay coefficients for the 

plasma insulin assay were 4.25, 4.1% respectively.   

Adipose Tissue Enzyme Activity  

  Adipose tissue was freeze-ground in liquid nitrogen.  Approximately 500 mg 

of adipose tissue was homogenized in 5 mL of lysis buffer consisting of: 0.3 M 

sucrose, 30 mM trizma base pH 7.4, 1 mM EDTA pH 8.0, and 1 mM Dithiothreitol 

(DTT).  Samples were centrifuged at 3,300 xg for 10 min at 4°C (Ingle et al., 1973).  

Following centrifugation, protein supernatant was collected for each sample and 

stored at -80°C for later analysis in 1.5 mL microcentri fuge tubes.  Activity of 

glucose-6-phosphate dehydrogenase (G6PDH), fatty acid synthase (FAS), and 

glycerol-3-phosphate dehydrogenase (G3PDH) were determined by reading the 

absorbance at 340 nm every 30 sec for 7 min at 25°C on Synergy 4 microplate 

reader (Bio-Tek, Winooski, VT).  Enzyme activity was calculated from the change in 

absorbance at 340 nm and expressed as nmol NADPH per min per mg protein.  For 
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G6PDH activity (n=48), protein was added to 100 mL of reaction buffer (125 mM tris 

pH 7.5, 1 M KCl, 50 mM MgCl2, 0.25 mM NADP+, 5 mM glucose-6-phosphate) and 

absorbance was read at 340 nm (Deutsch, 1983).  For G3PDH activity (n=24), 

protein lysate was added to 100 mL of reaction buffer (125 mM Triethanolamine-HCl 

pH 7.5, 2.5 mM EDTA, 0.5 mM NADH, 1.1 mM dihydroxyacetone phosphate, 0.125 

mM b-mercaptoethanol) and absorbance was read at 340 nm (Gamou et al., 1990). 

Activity of G3PDH was only analyzed for d 7 animals.  For FAS activity (n=48), 

protein was added to 100 mL of reaction buffer (50 mM potassium phosphate pH 

6.8, 2.5 mM b-mercaptoethanol, 0.26 mM NADPH, 0.2 mM acetyl CoA, 0.2 mM 

malonyl CoA) and absorbance was read at 340 nm (Ingle et al., 1973).  Reagents for 

enzyme activities were obtained from Sigma-Aldrich (St. Louis, MO).  Absorbance 

values were used in the Beer-Lambert equation to calculate a final activity value.  All 

three assays were conducted in the linear range with respect to amount of read time 

as well as amount of enzyme.  

Na+/K+ ATPase Activity 

  Longissimus dorsi (LD) muscle and whole liver tissue was freeze-ground in 

liquid nitrogen and stored at -80°C for later use.  Prior to the start of the assay, 500 

mg was homogenized in 4 mL of sucrose buffer (pH 7.4) consisting of: 50 mM 

sucrose, 1 mM Na2EDTA, and 20 mM tris base and centrifuged at  1000 xg for 10 

min for protein extraction.  Protein extracts were separated into 5 aliquots: two for 

water, two for ouabain, and one for BCA protein analysis.  Proteins with either MQ 

H2O or 20 mM Ouabain were pre-incubated for 15 min with Na+/K+ ATPase reaction 
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buffer (pH 7.0; 2000 mM NaCl, 100 mM KCl, 50 mM MgCl2 and 250 mM HEPES)  

and then incubated for 45 min after addition of fresh 105 mM ATP to start the 

reaction.  After 45 min the reaction was terminated using ice-cold 50% trichloroacetic 

acid.  Samples were centrifuged at 1500 xg for 10 min to obtain the final product 

which was present in the supernatant (Fuller et al., 2003).  Lastly, samples were 

analyzed for the presence of inorganic phosphate using the Molybdovanadate 

method (Ueda and Wada, 1970) and assessed in triplicate at a wavelength of 400 

nm using a Synergy 4 microplate reader (Bio-Tek, Winooski, VT).  Specific Na+/K+ 

ATPase activity was determined by the difference in Pi production from ATP in the 

presence of absence of ouabain (specific Na+/K+ ATPase inhibitor).  Unspecific 

phosphate hydrolysis was correlated by measuring Pi freed in the absence of protein 

suspension.  The inter- and intra-assay coefficients for LD, and liver phosphorus 

determination were 4.2, 4.3 and 3.9, 3.8%, respectively.  

 Western Blot  

  Longissimus dorsi tissue samples (~500 mg tissue in 5 mL extraction buffer) 

were homogenized and proteins were extracted and analyzed for protein content 

and frozen at -80°C for later use.  The extraction b uffer consisted of: 10 mM sodium 

monophosphate, 10 mM sodium diphosphate and 2% SDS.  Aliquots from each 

sample were standardized to a common concentration.  Samples were placed into a 

new 1.5 mL tube containing 50 µL of loading dye and SDS extraction buffer.  Load 

checks were run on all samples using 15% polyacrylamide gel (acryl-amide:N,N’-bis-

methylene acrylamide =100:1) consisting of 0.1% SDS (wt/vol), 0.05% TEMED 
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(vol/vol), 0.05% APS (vol/vol) and 0.5 M Tris-HCL pH 8.8 (Melody et al., 2004). Gels 

were then stained with Coomasse brilliant blue (100 mg brilliant blue/100 mL 

destain).  After staining, gels were washed with destain (consisting of 40% methanol, 

7% glacial acetic acid, and water) over night (Sasse and Gallagher, 2009).  

  Tissue homogenates (40 µg) were separated by SDS (10%) polyacrylamide 

gel electrophoresis (SDS-PAGE) with the same recipe as mentioned prior for load 

checks.  Gels were run under reducing conditions and transferred to PVDF 

membranes.  Prior to blocking, both gels and membranes were stained with 

Ponceau S stain (0.1% Ponceau S in 5% acetic acid) to ensure that proteins were 

transferred correctly (Sasse and Gallagher, 2008).  Membranes were washed with 

distilled water to remove stain before proceeding.  Membranes were blocked for 1 h 

in 5% non-fat dry milk (NFDM) in PBST.  Membranes were then blocked in primary 

antibody with 10 mL PBST overnight.  After blocking in primary antibody, 

membranes were washed 3 X for 10 min each with PBST (1X PBS, 0.1% Tween-20) 

then incubated with secondary antibody for one hour.  Finally, membranes were 

washed 3 X for 10 min each with PBST (Huff-Lonergan et al., 1996).  For detection,                                 

Amersham™ ECL Plus™ was used (50 µL of reagent A and 2 mL of reagent B) and 

membranes were incubated for 5 min in the dark before being imaged.  Band 

densities were quantified by densitometry using FOTO Analyst® Luminary/FX® 

(Fotodyne Inc, Hartland, WI) and TotalLab Quant (Total Lab®, Newcastle Upon 

Tyne, UK).  One control pig was used on all gels and bands were standardized to 

the density of the control animal.  



www.manaraa.com

48 

 

Table 2.2  Primary and secondary antibody dilution and source information for 
Western blot analysis 
Proteina Tissueb 1° dilution 1° source 2° source 2° dilution 

HSP 70 LD 1:1000 Mouse monoclonal Anti-mousec 1:10,000 
aHeat shock protein 70 (HSP70) 
bLongissimus Dorsi (LD)  
cAnti-mouse from Cell Signaling Technology, Danvers, MA 

 

AMP-Activated Protein Kinase (AMPK)  

  Phosphorylation of AMP-activated protein kinase (AMPK) was measured in 

longissimus dorsi muscle (LD), and liver samples from all animals using a 

commercially available solid-phase sandwich ELISA kit (Pathscan© Phospho-AMPK 

α Thr172, Cell Signaling Technology).  Tissue  (200 mg) was homogenized in 2 mL 

of lysis buffer consisting of: 20 mM tris-HCL (pH 7.5), 150 mM NaCl, 1mM Na2EDTA, 

1 mM EGTA, 1% triton, 20 mM sodium pyrophosphate, 25 mM sodium fluoride, 1 

mM β-glycerophosphate, 1 mM Na3VO4, and 1 µg/mL leupeptin.  Samples were 

centrifuged at 2500 xg for 10 min and separated into two aliquots; one for the ELISA, 

and one for BCA protein analysis. 

   Prior to sample analysis, a BCA protein assay was conducted in order to 

determine total protein content and dilution needed for the samples.  Samples 

required dilution if the protein content was greater than 1 mg/mL.  Diluent provided 

with the kit was used to dilute samples in the 96-well plate, and the plate was 

incubated overnight at 4°C.  The plate was washed 4 X with 1 X wash buffer 

(provided by the kit) 200 µL each time for each well.  After each wash, the plate was 

physically struck against paper towels in order to remove any residual solution left in 

the wells.  Next, 100 µL of the detection antibody was added to each well.  The plate 
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was then incubated for 1 h at 37°C.  After incubation , the plate was washed again as 

previously described, and 100 µL HRP-linked secondary antibody was added and 

incubated for 30 min at 37°C.  The plate was then wash ed a final time and 100 µL of 

TMB substrate was added to each well to initiate the reaction and incubated for 10 

min at 37°C.  Finally, 100 µL of stop solution was add ed to each well and the plate 

was shaken for a few seconds.  At this time the plate was read at 450 nm using a 

Synergy 4 microplate reader (Bio-Tek, Winooski, VT).  Specific phosphorylation 

activity was based on endogenous levels of AMPK α when phosphorylated at 

Thr172.  Values were calculated by standardizing samples based on protein content.  

Total protein content was determined from the BCA method (5.83 dilution factor for 

LD and liver).  Total Absorbance was calculated in duplicate by factoring in sample 

dilution (1:1 for LD, 1:4 for liver).  The final value was calculated as arbitrary units of 

total absorbance/total protein (mg/mL).  

 Statistics 

   All data were statistically analyzed using the PROC MIXED procedure of 

SAS version 9.1 (SAS Inst. Inc. Cary NC).  Data are reported as LSmeans and 

considered significant if P < 0.05.  Data were evaluated using two distinct models.  

For daily measurements (body temperatures, respiration rates and feed intake) each 

animal’s respective parameter was analyzed using repeated measures with an auto-

regressive covariance structure and day as the repeated effect.  The model included 

environment, day, and the interaction.  Analysis also tested differences between all 

three environments (TN, PFTN, HS) on d 7. 
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Results 

  Irrespective of day or time of day, pigs exposed to HS had an increase 

(P<0.01) in rectal temperature (39.3 vs. 40.8°C) compared to TN pigs and this 

increase was maintained throughout the duration of the experiment (Table 2.3).  

Rectal temperatures in PFTN pigs were decreased (P<0.05) compared to TN pigs by 

d 1 and this difference in body temperature was maintained throughout all 7 d 

(Figure 2.1).  Skin-temperatures at the shoulder and ham were increased (P<0.05) 

during heat stress compared to TN and PFTN pigs (37.5 vs. 43.3°C and 37.3 vs. 

43.1°C, respectively).  Skin temperature variables did not differ (P>0.1) in PFTN vs. 

TN pigs (Table 2.3).  Independent of time of day, compared to TN and PFTN pigs, 

HS animals had an immediate increase (P<0.05) in respiration rate on d 1 (49 vs. 

136 bpm).  Respiration rates decreased (P<0.05) in HS pigs on d 2 and 3, but 

remained elevated (P<0.05) compared to TN and PFTN pigs (55 vs. 115 bpm) 

throughout d 7 (Figure 2.1).  Respiration rates did not differ between PFTN and TN 

pigs (Table 2.3). 

  TN pigs consumed 1.96 kg/d of feed and this did not differ (P>0.1) over time 

(Figure 2.2).  Compared to TN pigs, HS pigs had an immediate decrease (47%; 

P<0.05) in FI by d 1 and this extent of decrease continued through d 7 (Table 2.4).  

By design, PFTN pig’s nutrient intake pattern mirrored intake of the HS group 

(Figure 2.2).  During the experiment, TN pigs had an ADG of 1.14 kg/d and had body 

weight gains of 1.27, 3.12, and 7.76 kg at 1, 3, and 7 d respectively (Table 2.4; 

Figure A-1.3).  HS pigs lost 2.7 kg of BW at 1 d  post-HS initiation but had gained 
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0.03 and 1.65 kg BW by d 3 and 7 respectively (Table 2.4; Figure 2.3).  The PFTN 

pigs lost 2.47 kg BW by d 7 (Table A-1.1; Figure 2.3).  

 Overall, HS pigs had reduced (P<0.05) plasma glucose levels compared to 

TN controls and this is primarily due to differences at d 3 and 7 (Table 2.5; Figure A-

1.4).  At d 7, analysis of all three environments indicates no treatment differences in 

plasma glucose levels (Figure 2.4).  Compared to TN controls, HS pigs had an 

immediate (d 1) and marked (P<0.05; 67%) increase in blood NEFA levels.  NEFA 

levels in HS pigs decreased on d 3 and d 7 and were similar to TN controls on both 

time points (Table 2.5; Figure A-1.4).  By d 7, circulating NEFA concentrations in 

PFTN pigs were increased 137% compared to TN and HS pigs (Figure 2.4).  Blood 

urea nitrogen levels in HS pigs increased 35% (P<0.05) on d 1 compared to TN pigs, 

but had reduced (18%; P<0.05) BUN levels compared to TN controls on d 3 and 7 

(Table 2.5; Figure A-1.4).  On d 7, BUN levels in PFTN pigs were similar to both TN 

and HS pigs (Figure 2.4).  Plasma cholesterol increased (P<0.05) in HS pigs at 1 d 

(25%) and d 3 (22%; Table 2.5; Figure A-1.5) but were similar to TN and PFTN pigs 

by d 7 (Figure A-1.5).  HS pigs had an immediate and sustained increase (50%; 

P<0.05) in plasma creatinine compared to both TN and PFTN controls (Table 2.5; 

Figure A-1.7).  Plasma insulin levels were decreased (P<0.05; 0.05 ng/mL) in HS 

pigs compared to TN pigs (P<0.05; Table 2.5).  On d 7, plasma insulin values were 

lowest in PFTN pigs and increased in HS and TN pigs (0.06a, 0.12b, and 0.17c 

ng/mL, respectively; Figure 2.4). 

  There was a treatment by day effect (P=0.05) for LD HSP 70 expression as it 
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was increased 151% in HS pigs at d 1 and temporally decreased (but was still 

elevated 75% compared to TN pigs) by d 7 (Figure 2.6).  Overall, HS pigs tended 

(P=0.06) to have increased (52%) LD Na+/K+ ATPase activity compared to TN pigs, 

although differences were largest (72%) at d 1 and became smaller with time (46 

and 40% on d 3 and 7, respectively; Table 2.6).  Analysis of just d 7 indicates there 

were no differences in LD Na+/K+ ATPase activity between TN, HS, and PFTN 

controls (Figure 2.5; Table A-1.3).  Overall, the hepatic Na+/K+ ATPase activities did 

not differ between TN and HS pigs (Table 2.6).  Analysis of all three environments 

on d 7 indicates PFTN pigs had a reduced (29%; P<0.05) hepatic Na+/K+ ATPase 

activity compared to both TN and HS pigs (Figure 2.5; Table A-1.3). 

  There were no overall differences between TN and HS pigs on LD 

phosphorylated-AMPK (Table 2.6) and d 7 analyses indicated similar 

phosphorylated-AMPK levels between all three treatments (Figure 2.5).  Liver 

phosphorylated-AMPK levels also did not differ between TN and HS pigs at any time 

point (Table 2.6).  However, PFTN pigs tended (P=0.08) to have reduced (24%) 

hepatic phosphorylated AMPK levels compared to TN and HS pigs (Figure 2.5).  

  Irrespective of day, adipose tissue FAS enzyme activity was decreased (30%; 

P<0.01) in HS pigs compared to TN controls (Table 2.7).  FAS enzyme activity on d 

7 tended (P=0.06) to decrease (35%) in HS pigs compared to TN pigs, but was 

increased 77% in HS compared to PFTN pigs (Figure 2.7).  Irrespective of day, 

adipose tissue G-6-PDH activity was decreased (16%; P<0.01) in HS pigs compared 

to TN controls (Table 2.7).  On d 7, activity of G-6-PDH decreased (24%; P<0.05) in 
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HS pigs compared to TN and PFTN controls (Figure 2.7).  There were no treatment 

affects on the activity of adipose tissue G-3-PDH on d 7 (Figure 2.7). 

          Discussion  

   Heat stress is a health (human and animal) issue which reduces domestic 

animal production parameters and negatively affects the global agriculture economy.  

Determining how HS detrimentally affects energetic homeostasis in growing pigs 

may allow for future nutritional or pharmaceutical interventions to ameliorate the 

negative effects of increased environmental temperatures.  An immediate effect of 

HS is a decrease in feed intake and this reduced appetite is presumably a strategy 

to minimize metabolic heat production.  Caloric restriction has obvious effects on 

metabolism, therefore in order to differentiate between the direct and indirect effects 

(mediated by reduced nutrient consumption) of HS, we utilized a thermal neutral ad-

libitum and a pair-fed thermal neutral model to eliminate the confounding effects of 

dissimilar feed intake. 

 Our HS protocol resulted in marked hyperthermia as all body temperature 

indices in the HS pigs were elevated compared to both TN and PFTN controls.  The 

HS regimen was constant and the lack of a cyclical or diurnal pattern of ambient 

temperature prevented the pigs from returning to euthermia during the cooler hours 

of the night.  Consequently, our heat stress protocol more closely resembles tropical 

or semi-tropical regions or southern regions of the USA.  The PFTN pigs had a 

reduced body temperature (0.6°C) compared to the TN co ntrols and this likely 

represents a reduced heat increment of feeding.  On a thermal energy basis, the 
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PFTN pigs had on average 195 kcal less total heat stored than TN pigs and this 

represents 6% of the difference in energy intake (TN pigs consumed 6577 kcal ME/d 

while the HS and PFTN pigs consumed 3456 kcal ME/d).   

  Heat stress conditions caused an immediate decrease in feed intake which 

remained lower (46%) than TN controls throughout the experiment.  By design, 

PFTN pigs had a similar pattern of reduced feed intake as the HS group.  Decreased 

feed intake during heat stress was expected as this is a highly conserved response 

amongst species (Collin et al., 2001b; DeShazer et al., 2009; Baumgard and 

Rhoads, 2011).  The extent of intake decrease in the current experiment is higher 

than typically reported in the literature (McGlone et al., 1988; Becker et al., 1992; Le 

Bellego et al., 2002) and indicates our heat-load was severe and probably more 

reflective of intense heat stress.  However, similar decreases in feed intake during 

heat stress have been observed in young pigs (48%; Collin et al., 2001b) and 

lactating sows (49%; Renaudeau et al., 2001), and demonstrates our model was 

experimentally and commercially relevant.  

 Both HS and PFTN conditions decreased pig body weight gain, while TN pigs 

continued to grow.  Body weight loss in HS pigs was most severe at 1 d which 

represented an acute heat-load and by d 3 and 7 of HS, weight gain remained lower 

than TN pigs but higher than the PFTN pigs.  Actually, by d 7 there was a 4.12 kg 

body weight difference between the HS and PFTN pigs.  Although the chemical 

composition of that body weight difference is not known, the literature suggests that 

pigs and other species gain more adipose tissue while heat-stressed (Heath, 1983).  
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If we assume this is all adipose tissue, the 4.12 kg equals more than 37 Mcal of 

energy.  However, it is likely that the 4.12 kg of body weight represents a 

combination of  1) a decrease in basal metabolic rate in HS pigs, 2) a difference in 

adipose accretion rates and 3) an increase in activity energy expenditure in the 

PFTN pigs (the PFTN pigs were visibly anxious while the HS pigs were much less 

active).  Regardless, based upon gross changes in body weight, reduced nutrient 

intake in HS pigs appears to fully explain the decrease in live/gross carcass weight 

and this agrees with previous results in pigs (Safranski et al., 1997) and cattle 

(O’Brien et al., 2010).  

 Heat stress decreased circulating glucose concentrations compared to TN 

pigs and this appears to be due to decreased feed intake as differences between 

environments (HS vs. TN vs. PFTN) were not detectable at d 7.  Our current results 

are similar to findings in heat-stressed pigs (Becker et al., 1992), and cows (Itoh et 

al., 1998; Ronchi et al., 1999; Shwartz et al., 2009).  In contrast with our results, 

previous studies indicated an increase in blood glucose concentrations in poultry 

(Bobek et al., 1997), rabbits (Marder et al., 1990), pigs (Prunier et al., 1997) and 

humans (Fink et al., 1975).  Reasons for the discrepancies in blood glucose in a 

myriad of studies may be due to the severity (both extent and acute vs. chronic) of 

the heat-load, physiological state, and nutritional status.  Pigs fed a typical high 

carbohydrate diet primarily obtain circulating glucose from intestinal absorption 

(McMillin, 1990), but the contribution from gluconeogenesis will increase depending 

upon the extent and severity of nutrient restriction (Campbell, 1999)  In addition, 
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circulating glucose (or any metabolite) is a combination of both pool entry (intestinal 

absorption or hepatic output) and pool removal (i.e. myocyte and adipocyte uptake) 

and thus the plasma concentration has severe limitations to understanding glucose 

dynamics/turnover. 

 Animals on a lowered plane of nutrition are typically hypoinsulemic (Berg et 

al., 2007) and this is a highly conserved post-absorptive effect amongst species.  

Our PFTN model had reduced plasma insulin compared to HS and TN pigs on d 7.  

Both HS and PFTN pigs were nutrient restricted (~50%) and while both had 

decreased circulating insulin compared to the TN pigs, the HS animals had 100% 

higher insulin levels than the PFTN pigs.  This is unusual as they were both on a 

inadequate/suboptimal plane of nutrition.  In addition, HS animals are thought to be 

in a catabolic state and epinephrine and cortisol both inhibit pancreatic insulin 

secretion (Katsuhiko et al., 1982).  This peculiar insulin response agrees with a 

previous malignant hyperthermic pig model (Hall et al., 1980) as well as heat-

stressed rodents (Torlinska et al., 1987), growing steers (O’Brien et al., 2010) and 

lactating cows (Wheelock et al., 2010).  Increased insulin appears to be an important 

survival adaptation to elevated temperatures as diabetic rats (Frascella et al., 1977; 

Niu et al., 2003) and humans (Shuman, 1972; Bouchama et al., 2007) are more 

susceptible to heat stress.  Compared to the PFTN controls, the HS pigs had 

reduced NEFA levels (discussed below) and it has recently been demonstrated that 

high NEFA levels blunt pancreatic insulin secretion (Boden and Shulman, 2002) and 

the differential NEFA levels between the two energetically similar models may help 
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explain differences in basal insulin levels.  

  Undernourished growing animals alter metabolism and mobilize adipose 

tissue and this is a classic glucose sparing mechanism to maximize skeletal protein 

accretion (Randle, 1998).  As expected, after 7 d the PFTN pigs had increased 

plasma NEFA levels.  However, HS pigs only had increased plasma NEFA 

concentrations at d 1, but had similar levels as TN pigs at d 3 and 7.  This temporal 

pattern is strikingly similar to what is observed in heat-stressed chickens (Bobek et 

al., 1997).  Reasons for the immediate increase in NEFA and subsequent decline 

are ill-defined but may correlate with the temporal pattern of stress hormones (i.e. 

cortisol, catecholamines) which have been shown to increase during acute heat 

stress (Beede and Collier, 1986), but have not been thoroughly characterized during 

chronic heat stress (especially in the pig model).  Regardless, this eventual 

decrease in circulating NEFA also agrees with previous research demonstrating 

decreased NEFA levels in malignant hyperthermic pigs (Hall et al., 1980), rodents 

(Sano et al., 1983) and cattle (Rhoads et al., 2009a; Schwartz et al., 2009).  Despite 

agreeing with heat stress literature, this is somewhat unexpected as heat-stressed 

animals are on a lowered plane of nutrition, losing body weight, and in a calculated 

negative energy balance.  This is especially surprising as plasma stress hormones 

(i.e. cortisol and epinephrine) are increased during a heat-load, and both normally 

stimulate adipose tissue mobilization (Beede and Collier, 1986).  Insulin is a potent 

lipolytic inhibitor and the aforementioned increase in basal insulin may explain the 

lack of a NEFA response during heat stress (Baumgard and Rhoads, 2011).  This 
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mechanism (minimal adipose mobilization) may have evolved in order to survive a 

heat load as β-oxidation of fatty acids may produce more metabolic heat compared 

to oxidation of carbohydrates (Baumgard and Rhoads, 2007).  This hypothesis is 

supported by evaluating the metabolic effects that occur during hypothermia.  

Animals in a cold environment increase NEFA and blood glucose levels and this has 

been observed in cold-stressed cows (Tamminga and Schrama, 1998), humans 

(Hurley and Haymes, 1982) and rodents (Doi et al., 1982).  These alterations during 

hypothermia may be due to decreased plasma insulin (Doi et al., 1982) and 

demonstrate metabolic responses in a physiological state which are opposite of what 

occurs during heat stress.  

  Increased insulin levels may also help explain why heat-stressed animals 

(rodents, poultry, pigs) have more carcass lipid than bioenergetically expected 

(Heath, 1983; Prunier et al., 1997; Ronchi et al., 1999).  Pigs on a high 

carbohydrate/ low fat diet primarily accrue adipose tissue via de novo fatty acid 

synthesis (as opposed to pre-formed fatty acid uptake) and FAS and G-6-PDH are 

two key enzymes involved with this process.  In agreement with the circulating 

insulin levels, adipose FAS activity was almost double in the HS pigs compared to 

the PFTN controls.  Interestingly, G-6-PDH was decreased in the HS pigs 

(compared to TN and PFTN controls), but this enzyme is multifunctional and one of 

its functions is to minimize oxidative damage (Kletzien et al., 1994).  Decreased G-6-

PDH activity may indicate a decrease in cellular NADPH which can lead to reactive 

oxygen species (ROS) and apoptosis (Mailloux and Harper, 2010).  Consequently, it 
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appears HS pigs may be prone to oxidative stress (at least in adipose tissue) and 

this agrees with a variety of previous reports (Hall et al., 2001).  Regardless of the 

ambiguous G-6-PDH data, the FAS results coupled with the plasma NEFA data 

suggest that both increased lipogenesis and blunted lipolysis contribute to increased 

carcass adipose tissue in heat-stressed pigs. 

  A response to malnutrition is skeletal muscle mobilization and circulating BUN 

and creatinine can be used as gross proxies of proteolysis.  Compared to TN pigs, 

BUN levels were elevated after 24 h of HS, but returned to basal levels by 3 and 7 d 

and no differences were observed between the three environments on d 7.  Although 

these results do not agree with previous models which demonstrated a sustained 

BUN increase in HS ruminants (O’Brien et al., 2010; Wheelock et al., 2010), this 

may be due to differential nutrient utilization in ruminants.  Plasma creatinine in our 

model was also increased during HS compared to both TN and PFTN pigs.  

Creatinine can be an indicator of muscle catabolism as it is produced from the 

breakdown of creatine phosphate.  Creatine phosphate is converted to creatine (and 

vice a versa) by creatine kinase during protein break down (Berg, 2007).  Elevated 

plasma creatinine agrees with previous data in a baboon model of severe heatstroke 

(Bouchama et al., 2005) as well as in heat-stressed cows (Srikandakumar et al., 

2003).  The increased creatinine levels in HS may indicate skeletal muscle 

catabolism and this is different from the PFTN pigs which appear to conserve 

muscle mass during nutrient restriction.  The lack of a sustained response of BUN 

also agrees with our plasma creatine kinase (CK) data which did not differ between 
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environmental treatments.  However, it has previously been demonstrated that CK is 

increased in HS poultry (Yuinato et al., 1997) and cows (Schneider et al., 1988; 

Kamiya et al., 2006).  In addition, Nt-methyl-histidine is another good indicator of 

muscle proteolysis and is increased during a heat-load in poultry (Yunianto et al., 

1997) and lactating cows (Kamiya et al., 2006).   

 Severely heat-stressed animals presumably have an increase in energy 

expenditure (Brody, 1945; Klieber, 1961).  Cellular ion pumping has a large 

energetic cost (Hardie, 2008) and it is the biggest component of the basal metabolic 

rate (Ianello et al., 2007).  The Na+/K+ ATPase pump maintains cellular osmolarity 

and utilizes ATP to generate ion gradients and is responsible for 20-25% of the total 

O2 required by muscle (Adeola et al., 1989).  The reason for increased pump activity 

during HS (Chen et al., 1994) is not known, but catecholamines (Clausen and 

Hansen, 1977) and insulin (Erlij and Grinstein, 1979) increase pump action and both 

are elevated in HS animals (Frascella et al., 1977; O’Brien et al., 2010; Figure 2.4).  

As we hypothesized, the LD from HS pigs had increased Na+/K+ ATPase activity and 

this supports the idea that HS animals have increased basal energy requirements. 

  In contrast to skeletal muscle, hepatic Na+/K+ ATPase activity did not differ 

between HS and TN pigs.  However, PFTN pigs had reduced Na+/K+ ATPase activity 

and this may be due to increased circulating blood NEFA levels, as fatty acids are 

thought to decrease pump activity in some tissues (Ianello et al., 2007).  The exact 

reasons why there appears to be differential effects of heat stress on the Na+/K+ 

pump between tissues is of interest and needs to be evaluated further.   
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 AMPK is a primary cellular energy gauge (Hardie, 2008) and is activated by 

(amongst others) a decreased ATP/AMP ratio (Kemp et al., 1999).  Activated AMPK 

(via phosphorylation) stimulates cellular glucose uptake (via GLUT-4) and fuel (fatty 

acids and glucose) oxidation (Goodyear and Kahn, 1998).  Based upon recent data 

(Sanders et al., 2010) we speculated that HS pigs would have increased LD levels of 

phosphorylated AMPK, but both the HS and PFTN pigs had similar levels as the TN 

pigs.  This is surprising as the HS pigs had increased LD Na+/K+ ATPase activity and 

this is a large ATP utilizing system.  However, we only measured phosphorylated 

AMPK and a better indicator of cellular AMPK status would include the ratio of total 

to phosphorylated AMPK (Kemp et al., 1999).  Regardless, it initially appears that 

the intra-cellular energy levels of the LD may be adequate during HS.   

  Similar to the LD AMPK data, hepatic levels of phosphorylated AMPK did not 

differ between TN and HS pigs.  In contrast, the PFTN pigs had a reduction in liver 

phosphorylated AMPK and this may indicate an energy conservation strategy.  

However, why there are differences in hepatic activated AMPK between the HS and 

PFTN controls is not known (both in similar nutritional states) but this supports other 

energetic data that suggests the heat-stressed liver somehow protects itself from 

metabolic and oxidative stress (Sanders et al., 2010). 

        Conclusions   

  Heat-stressed animals enlist energy-sparing mechanisms in order to reduce 

metabolic heat production.  In order to do this, animals may preferentially utilize 

carbohydrates instead of lipids during a heat-load.  Muscle proteolysis is increased 
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during heat stress, presumably to provide carbons for energy utilization.  Also during 

heat stress, insulin is increased which reduces blood glucose, inhibits adipose 

lipolysis, and increases adipose lipogenesis.  Elevated insulin levels may be a 

metabolic adaptation to preferentially oxidize carbohydrates as oxidation of fatty 

acids produces more metabolic heat.  If this is indeed the case, the liver would need 

to maintain energy homeostasis in order to support hepatic gluconeogenesis, and 

glycogenolysis.  This is supported by decreased NEFA levels, increased fatty acid 

synthesis (FAS), and decreased blood glucose concentrations.  In addition, hepatic 

gluconeognesis would be inhibited by a rise in cellular AMP.  Measures of hepatic 

energy homeostasis indicate that the liver may be able to compensate for increased 

energy demands during a longer period of heat stress. 
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Table 2.3  Effect heat stress (HS) and plane of nutrition on body temperature 
parameters in growing pigs 

 Environment  P 
Parameter TN1  HS  PFTN2 SEM Trt Day T x D3 
Rectal Temperature, °C          

0800 h 39.1a  40.4b  38.7c 0.1 <0.01 <0.01 <0.01 
1200 h 39.1a  40.7b  38.8c 0.1 <0.01 <0.01 <0.01 
2000 h 39.3a  40.9b  38.7c 0.1 <0.01 <0.01 <0.01 

Respiration, bpm          
0800 h 48.8a  100.2b  48.4a 1.8 <0.01 <0.01 <0.01 
1200 h 50.4a  117.6b  49.3a 2.0 <0.01 <0.01 <0.01 
2000 h 55.0a  115.1b  55.9a 2.6 <0.01 <0.01 <0.01 

Skin Temperature, °C          
   Shoulder          

0800 h 34.6a  42.4b  33.1a 0.3 <0.01 <0.01 <0.01 
1200 h 34.8a  43.1b  33.6a 0.3 <0.01 <0.01 <0.01 
2000 h 37.3a  43.3b  35.6a 0.2 <0.01 <0.01 <0.01 

    Ham          
0800 h 34.0a  42.4b  32.6a 0.3 <0.01 <0.01 <0.01 
1200 h 34.2a  43.1b  33.2a 0.3 <0.01 <0.01 <0.01 
2000 h 37.1a  43.1b  35.4a 0.2 <0.01 <0.01 <0.01 

1Thermal Neutral 
2Pair-fed Thermal Neutral 
3Treatment x Day Interaction 
Values are an average of days 1-7 of environmental conditions 
a,b,c P<0.05 represents treatment differences 
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Figure 2.1 : Effects of constant environment [ad-libitum intake in thermal neutral     
(TN; 20°C) conditions; heat stress (HS; 35°C) or pairfee ding in thermal neutral 
conditions (PFTN)] on (A) Rectal temperatures and (B) Respiration rates at 2000h in      
growing pigs.

A 

B 
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Figure 2.2 : Effects of constant environment [ad-libitum intake in thermal neutral (TN; 20°C) conditions;  
heat stress (HS; 35°C) or pairfeeding in thermal neutr al conditions (PFTN)] on daily feed intake in growing pigs. 
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Table 2.4 Effects of heat stress (HS) on production parameters in growing pigs 
 Day of Experiment    
 1  3  7   P  

Parameter TN1 HS  TN HS  TN HS  SEM Trt Day T x D2 
ADFI3, kg/d 1.86a 0.94b  2.05a 1.07b  2.00a 1.06b  0.11 <0.01 <0.01 <0.01 
ADG4, kg/d 1.27a -2.70b  1.04a 0.01c  1.11a 0.24c  0.11 <0.01 <0.01 <0.01 
∆ BW5, kg   1.27a  -2.70b  3.12c   0.03d  7.76e 1.65a  0.55 <0.01 <0.01 <0.01 
1Thermal Neutral 
2Treatment x Day Interaction 
3Average Daily Feed Intake 

4Average Daily Gain 
5Change in Body Weight 
a,b,cP < 0.05 
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Figure 2.3 : Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C) 
and heat stress (HS; 35°C) conditions on the (A) tempora l change in body weights 
and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions (PFTN) on 
change in body weight at the end of the experiment. a,b,cP<0.05

 A 

 B 
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Table 2.5 Effects of heat stress (HS) on plasma energetic variables growing pigs  
 Day of Experiment    
 1  3  7   P  

Parameter TN1 HS  TN HS  TN HS  SEM Trt Day T x D2 
Glucose, mg/dL 110.7 108.8  116.0 104.5  116.8 105.8  4.5 0.04 0.94 0.50 
BUN3, mg/dL 10.2bc 13.8a  11.2b 8.4cd  10.0bc 7.3d  0.9 0.42 <0.01 <0.01 
NEFA4, mmol/L 0.09a 0.27b  0.06a 0.09a  0.07a 0.09a  0.03 0.02 <0.01 0.03 
Insulin, ng/mL 0.09 0.05  0.13 0.09  0.17 0.12  0.02 0.01 <0.01 0.88 
Triglycerides, mg/dL 44.0 50.7  41.4 47.8  37.5 47.3  5.6 0.11 0.66 0.94 
Cholesterol, mg/dL 93.0a 116.7b  92.4a 112.7b  92.7a 92.7a  5.7 <0.01 0.07 0.07 
Creatinine, mg/dL 1.03 1.50  1.06 1.37  1.0 1.51  0.08 <0.01 0.82 0.47 
ALK Phos5, IU/L 247a 211ab  232ab 132c  204b 103c  16 <0.01 <0.01 0.11 
1Thermal Neutral 
2Treatment x Day Interaction 
3Blood Urea Nitrogen 
4Non-esterified Fatty Acids 
5Alkaline Phosphatase 
a,b,cP<0.05 
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Figure 2.4: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C), heat stress (HS; 35°C) and pair-
feeding in thermal neutral conditions (PFTN) on (A) Plasma insulin, (B) Plasma non-esterified fatty acids (NEFA), (C) 
Plasma glucose, and (D) Plasma blood urea nitrogen (BUN) at the end of the experiment in growing pigs. a,b,cP<0.05 
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Table 2.6 Effects of heat stress (HS) on energetic variables of the Longissimus Dorsi (LD) and liver in 
growing pigs 

 Day of Experiment    
 1  3  7   P  

Parameter TN1 HS  TN HS  TN HS  SEM Trt Day T x D2 
LD HSP 703 1.41a 3.54b  1.46a 2.40c  1.29a 2.27c  0.26 <0.01 0.03 0.05 
LD ATPase4 122.5 210.5  139.8 205.2  135.5 189.2  41.9 0.06 0.97 0.92 
Liver ATPase 107.0 105.1  101.3 100.5  104.3 88.8  9.1 0.43 0.56 0.65 
LD AMPK5 0.24 0.36  0.27 0.25  0.26 0.30  0.05 0.24 0.73 0.25 
Liver AMPK 1.18 1.30  1.03 1.05  1.29 1.32  0.10 0.51 0.05 0.87 
1Thermal Neutral 
2Treatment x Day Interaction 
3Heat-shock Protein 70, Arbitrary Units 
4Na+/K+ ATPase Activity, µmol Pi/mg protein 
5AMP-activated Kinase Absorbance, (mg/mL) 
a,b,cP <0.05 
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Figure 2.5: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C), heat stress (HS; 35°C) and pair-
feeding in thermal neutral conditions (PFTN) on (A) Longissimus Dorsi (LD) Na+/K+ ATPase activity, (B) Liver Na+/K+ 
ATPase activity, (C) LD AMPK, and (D) Liver AMPK at the end of the experiment in growing pigs. a,b,cP<0.05

 A  B 

 C  D 
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Figure 2.6 : Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C) 
and heat stress (HS; 35°C) conditions on the (A) tempora l change in Longissimus 
Dorsi (LD) HSP 70 expression and (B) effects of TN, HS, and pair-feeding in thermal 
neutral conditions (PFTN) on change in LD HSP 70 expression at the end of the 
experiment. a,b,cP<0.05 
 

A 
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Table 2.7  Effects of heat stress (HS) on energetic metabolism measures in growing pigs  

 Day of Experiment    
 1  3  7   P  

Parameter TN1 HS  TN HS  TN HS  SEM Trt Day T x D2 

FAS activity3 19.89 16.65  22.42 14.35  19.88 12.89  2.56 <0.01 0.66 0.64 
G6PDH ativity4 39.88 35.71  40.72 34.84  34.86 26.60  2.56 <0.01 <0.01 0.63 
1Thermal Neutral 
2Treatment x Day Interaction 

3Fatty Acid Synthase, nmol NADPH oxidized/min/mg protein 
4Glucose-6-phosphate Dehydrogenase, nmol NADPH produced/min/mg protein 
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Figure 2.7 : Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C), 
heat stress (HS; 35°C) and pair-feeding in thermal neu tral conditions (PFTN) on (A) 
FAS enzyme activity (B) G-6-PDH enzyme activity, and (C) G-3-PDH enzyme 
activity at the end of the experiment in growing pigs. a,b,cP<0.05
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CHAPTER 3 
THE EFFECTS OF HEAT STRESS ON INTESTINAL PERMEABILI TY IN 

GROWING PIGS 

           Abstract 

  Heat stress can compromise intestinal integrity and induces “leaky” gut in a 

variety of species.  This increase in intestinal permeability adds to the risk of 

bacterial sepsis and ultimately reduces growth performance.  However, whether this 

occurs in pigs and the mechanisms responsible for it are ill-defined.  Crossbred gilts 

(n=48; 35±4 kg BW) were housed in constant climate controlled rooms in individual 

pens and exposed to 1) thermal neutral (TN) conditions (20°C; 35-50% humidity) 

with ad libitum intake (n=18), 2) HS conditions (35°C; 20-35% humidity) with ad 

libitum intake (n=24) or 3) pair-fed in thermal neutral conditions [PFTN], n=6: to 

eliminate confounding effects of dissimilar feed intake [FI]).  Pigs were sacrificed at 

1, 3, or 7 d of environmental exposure and freshly isolated jejunum samples were 

mounted into modified Ussing chambers.  Intestinal segments were then analyzed 

for transepithelial electrical resistance (TER) and intestinal fluorescein 

isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) transport expressed as 

endotoxin apparent permeability coefficient (APP).  Irrespective of day, plasma 

endotoxin concentrations increased 46% (P<0.05) in HS pigs compared to TN pigs, 

while TER decreased 24% (P<0.05) and endotoxin APP increased 81% (P<0.01).  

Furthermore, d 7 HS pigs tended (P=0.06) to have increased APP compared to 

PFTN controls.  These data indicate that HS and PFTN conditions decreases 

intestinal integrity and increases endotoxin permeability.  We hypothesize that these 

events lead to increased acute inflammation which contributes to reduced pig 
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performance during warm summer months. 

      Introduction 

  Although a consensus appears to have been reached on whether or not 

global warming is occurring, the reasons contributing to it remain intensely debated 

(Bernabucci et al., 2010).  Data suggests that global temperatures are rising at a 

rate of 0.2°C per decade and this number is likely to i ncrease in the future (US EPA, 

2010).  Both humans and animals are adversely affected by rising environmental 

temperatures.  Humans can become ill or even die due to heat stress related 

illnesses and during the last 75 years, heat related mortality has been particularly 

high (Yan et al., 2006).  In 2003, 15,000 people died during a two week heat-wave in 

France (Kovats et al., 2006), and heat-related morbidity is projected to increase if 

climate change is not curbed (Schar and Jendritzky, 2004).  This is alarming 

because currently, over 30% of human heat -stroke patients admitted to hospitals 

die (LoVecchio et al., 2007) and some estimate this number to be near 80% 

(Nixdorf-Miller et al., 2006).  Animal production is also affected by heat stress as the 

US swine industry loses over $300 million annually due to heat stress and global 

loses to animal agriculture are in the tens of billions of dollars (St-Pierre et al., 2003).  

Growing pigs and lactating sows are especially heat susceptible because they lack 

functional sweat glands and produce a large amount of metabolic heat (D’Allaire et 

al., 1996; Brown-Brandl et al., 2004).   

Heat-stressed humans and animals redistribute blood to the periphery in an 

attempt to maximize radiant heat dissipation and vasoconstrict the gastrointestinal 
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tract in order to reprioritize blood flow (Lambert, 2008).  Consequently, the reduced 

blood and nutrient flow to the intestinal epithelium compromises the integrity of the 

intestinal barrier (Yan et al., 2006).  This “leaky gut” or enhanced intestinal 

permeability increases certain blood markers of endotoxemia and inflammation (Hall 

et al., 2001).  Increased plasma LPS has been observed during sepsis, indicating 

that bacteria (or Gram negative bacterial cellular components) have been 

transported across the intestinal epithelium and into systemic circulation (Hall et al., 

2001).  Circulating cytokines (indicative of an immune response) are also increased 

during endotoxemia and they consequently lead to inflammation (Leon, 2007).  

Incidentally, human heat stroke patients exhibit similar increased blood markers 

(Bouchama et al., 1993), as do people suffering from septic shock.  In addition, 

despite marked reductions in nutrient intake, immune stimulation and specifically 

LPS inexplicably increases circulating insulin levels (Waldron et al., 2006; Rhoads et 

al., 2009b).  Therefore, these sepsis and inflammation markers may also alter 

metabolism and nutrient partitioning (Baumgard and Rhoads, 2011) and may explain 

why heat-stressed farm animals have decreased production.   

  Currently, besides cooling and rehydration there are no standard protocols for 

treating people with heat-stroke and little or no drugs are approved to medicate the 

environmentally-induced hyperthermic patient (Caspani et al., 2004).  Surprisingly, 

many patients die 1-3 days following the heat insult (even though body temperatures 

had returned to euthermia) and reasons for this are unclear, as no current definition 

of heat-related mortality exists (Ostro et al., 2009).  Due to the complex nature of 
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heat-stroke pathogenesis, accurate morbidity and mortality statistics are difficult to 

obtain and this introduces confounding variables as to the cause of death (Basu, 

2009).  A common plasma variable frequently observed in heat-stroke patients that 

eventually die is elevated endotoxin or lipopolysaccharide (LPS) concentrations and 

these are often accompanied by other associated hallmarks of sepsis and 

inflammation (Lambert, 2009). 

   Therefore, the objectives of this study were to determine if heat stress 

directly or indirectly increases intestinal permeability in growing pigs and that this 

leaky gut augmented endotoxin transport and circulating concentrations.  We 

hypothesized that an increased heat-load causes physiological changes to the 

intestinal epithelium, results in compromised barrier integrity and altered intestinal 

function and that this may contribute to the overall severity of heat stress related 

illness. 

       Materials and Methods 

Animals and Treatment 

  Iowa State University Institutional Animal Care and Use Committee approved 

all procedures involving animals.  Female crossbred gilts (n = 48, 35 ± 4 kg BW) 

were selected by body weight and housed in individual pens (with individual feeders 

and waters) in one of two rooms (24 pens/room) at thermal neutral conditions.  

Animals were allowed to acclimate to their environment for 5 d at the Iowa State 

University Swine Nutrition Farm prior to start of the experiment.  Pigs were assigned 

to one of three environmental treatments: 1) thermal-neutral (TN) conditions (20°C; 
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35-50% relative humidity)  with ad libitum feed intake, 2) heat stress (HS) conditions 

(35°C; 20-35% relative humidity) with ad libitum in take or 3) TN conditions but pair-

fed (PFTN) to mirror the nutrient intake of the HS pigs.  Pigs in the TN (n=18) and 

HS (n=24) conditions were sacrificed at 1, 3 and 7 d post initiation of environment 

treatment.  The PFTN pigs (n=6) were only sacrificed at 7 d post initiation of nutrient 

restriction. 

  After the environmental initiation, reduced feed intake in the HS pigs was 

calculated daily based on the percentage decrease from each animal’s average feed 

intake prior to HS; the amount offered to PFTN pigs was reduced by that amount.  

The PFTN group lagged one day behind the 7 d heat stress pigs in order to calculate 

and implement feed intake reductions.  Pair-feeding was used to eliminate 

confounding effects of dissimilar feed and nutrient intake.  Individual animal feed 

intake was determined daily at 0800 h.  Pair-fed pigs were fed calculated amounts 

thrice daily at (0700, 1200, and 2000 h) in an attempt to reduce post-prandial shifts 

in carbohydrate and lipid metabolism.   

  Regardless of environmental treatment, all animals were fed the same diet 

throughout the duration of the experimental period.  Samples were analyzed at the 

University of Missouri Agricultural Experiment Station Chemical Laboratories.  

Samples were analyzed in duplicate for proximates of crude protein (LECO), crude 

fat, moisture, ash, and crude fiber.  A standard protein hydrolysate package for 

amino acid analysis of: Asp, Thr, Ser, Glu, Pro, Gly, Ala, Met, Val, Ile, Leu, Tyr, Phe, 

His, Lys, Arg was also performed (for diet composition see table 2.1).   
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  Each room’s temperature and humidity were monitored by a data recorder 

(Lascar® model EL-USB-2-LCD, Erie, PA) which was set to record environmental 

data every 30 min.  Each room’s ambient temperature was controlled but humidity 

was not governed.  All pigs were monitored continuously for signs of distress.  Body 

temperature parameters were obtained four times daily (0800, 1200, 1600, and 2000 

h).  Rectal temperatures were recorded with a digital thermometer (Top care®, 

Waukegan, IL), skin temperatures at the shoulder and ham were recorded with an 

infrared temperature gun (Extech® instruments Model 42505, Waltham, MA) and 

respiration rates (breaths/min) calculated with a stopwatch.  Heat-stressed pigs were 

removed from the room and cooled down with cool water if rectal temperature 

exceeded 41.0°C (105.8°F).  Cooling time was standardi zed at 10 min, at which 

point the animals were returned to their respective pens.  

  Body weights were recorded on all animals at the beginning of the experiment 

and immediately prior to sacrifice.  Jugular vein blood was obtained (10 mL BD® 

vacutainers containing 143 U.S.P units of sodium heparin) while the animals was 

nose-snared and immediately sacrificed using the captive bolt technique followed by 

exsanguination.  Blood was also obtained after sacrifice from the hepatic portal vein 

(using a 22G 5 mL syringe; BD® LEUR-LOK™, Franklin Lakes, NJ) and placed into 

sodium heparin vacutainers.  Blood harvested from the jugular and hepatic portal 

vein was centrifuged at 1300 x g to obtain plasma, alliquotted into five 1.5 mL 

microcentrifuge tubes and stored at -20°C for later an alysis.  

  All tissues were harvested within 12 min of death and included: whole 
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jejunum, whole colon, jejunum mucosal scrapings.  Tissue samples were snap-

frozen in liquid nitrogen and stored at -80°C until later analyses.  Two additional 

samples of whole jejunum and whole colon were obtained and either placed 

immediately into Krebs-Henseleit buffer (containing 25 mM NaHCO3, 120 mM NaCl, 

1 mM MgSO4, 6.3 mM KCl, 2 mM CaCl and 0.32 mM NaH2PO4, pH 7.4) under 

constant aeration for transport to the laboratory and mounting into Ussing 

Chambers. Fresh intestinal segments were also immediately fixed in 10% formalin 

for later histology analysis.  

Ussing Chambers 

  Intestinal tissue from the proximal jejunum and colon of each animal was 

obtained mounted into modified Ussing chambers (Physiological Instruments and 

DVC 1000; World Precision Instruments, New Haven, CT) for determination of 

intestinal integrity, nutrient and endotoxin transport.  Tissue samples were pinned 

and placed vertically into the chambers with the mucosal membrane facing one half 

of the chamber and the serosal membrane facing the other half.  Each side of the 

membrane was bathed in 4 mL of Krebs-Henseleit buffer (KHBB) and tissue was 

provided with a constant O2-CO2 mixture.  Individual segments were clamped at a 

voltage of 0 mV and after 30 min of stabilization small and large intestine tissue was 

challenged (sequentially, 20 min apart) with 10 mmol/L D-glucose, 10 mmol/L 

glutamine, and 10 mmol/L lysine for nutrient transport.  Measurements of current for 

nutrient transport were then obtained every 10 sec and the change in maximal 

current used to calculate tissue conductance from Ohm’s law.  This was used to 
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determine rate of transport of the aforementioned nutrients.  Transepithelial electrical 

resistance (TER) was calculated by averaging the current during the first 10 min of 

tissue stabilization (Gabler et al., 2007, 2009). 

  Small and large intestinal segments were also assessed for endotoxin 

transport using fluorescein isothiocyanate labeled lipopolysaccharide (FITC-LPS).  

After 20 min of stabilization, Krebs-Henseleit buffer was removed from the donor 

side and 20 µg/mL of FITC-LPS was added while 5 mL of KHBB was added to the 

acceptor side.  Samples from the acceptor side were obtained in duplicate every 20 

min for 120 min and read in a fluorescence spectrophotometer at 495 nm and 

analyzed for apparent permeability coefficient (APP).  The APP was calculated (as 

previously described by Tomita et al., 2004) using the following formula: 

     APP = dQ/ (dt x A x C0)  

where dQ/dt is the rate of FITC-LPS transport in µg/sec which is the slope of the 

regression line obtained by the spectrophotometer.  C0 is the concentration in µg/mL 

and A is the area of the membrane in cm2. 

Total Protein Determination  

  Total protein concentration of all tissues and plasma was measured for 

various lab analyses and concentration was determined in triplicate using a 

commercially available assay kit (Pierce® BCA microplate protein assay kit, Pierce, 

Rockford, IL).  Bovine serum albumin (BSA) and MQ H2O combinations were used 

as standards and samples were analyzed in triplicate.  After addition of standards, 

MQ H2O was added to all non-standard wells and then samples were vortexed and 



www.manaraa.com

83 

 

added to the plate.  Finally, 160 µL of the working color reagent (50 parts Solution A 

to 1 part Solution B) was added to all wells.  The plate was incubated for 1 h at room 

temperature and then read at 562 nm using a Synergy 4 microplate reader (Bio-Tek, 

Winooski, VT). 

Circulating Endotoxin Assay 

  Plasma endotoxin concentrations were determined using a commercially 

available kit validated for use in our laboratory.  Endotoxin concentrations were 

determined in triplicate using a recombinant Factor C (rFC) endotoxin assay with a 

1/1000 dilution factor for porcine plasma samples (PyroGene® Recombinant Factor 

C Endotoxin Detection System, Lonza, Walkersville, MD). Activation of Factor C by 

endotoxin binding causes action upon the fluorogenic substrate in the assay 

producing a fluorescent signal.  The procedure was conducted in 96-well 

microplates.  Fluorescence was measured at time 0 and after 1 h incubation at 37°C.  

The plates were then read under fluorescence using a Synergy 4 microplate reader 

(Bio-Tek, Winooski, VT) with excitation/emission wavelengths of 380/440nm.  All d 7 

pigs (HS, TN, and TNPF, n=24) were analyzed for total protein concentration using 

the BCA assay in order to determine the dilution factor needed for the endotoxin 

assay.  The assay was run first on jugular plasma and then on portal plasma.  Some 

portal plasma samples (n=5) were unable to be used due to low or no volume 

obtained at time of sacrifice.  The inter- and intra-assay coefficients for plasma 

endotoxin were 27.8, 21.8%, respectively.   
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Jejunum Na+/K+ ATPase Activity  

  Whole jejunum tissue was freeze-ground in liquid nitrogen and stored at -

80°C for later use.  Prior to the start of the assay , 500 mg was homogenized in 4 mL 

of sucrose buffer (pH 7.4) consisting of: 50 mM sucrose, 1 mM Na2EDTA, and 20 

mM tris base and centrifuged at  1000xg for 10 min for protein extraction.  Protein 

extracts were separated into 5 aliquots: two for water, two for ouabain, and one for 

BCA protein analysis.  Proteins with either MQ H2O or 20 mM Ouabain were pre-

incubated for 15 min with Na+/K+ ATPase reaction buffer (pH 7.0; 2000 mM NaCl, 

100 mM KCl, 50 mM MgCl2 and 250 mM HEPES)  and then incubated for 45 min 

after addition of fresh 105 mM ATP to start the reaction.  After 45 min the reaction 

was terminated using ice-cold 50% trichloroacetic acid.  Samples were centrifuged 

at 1500 xg for 10 min to obtain the final product which was present in the 

supernatant (Fuller et al., 2003).  Lastly, samples were analyzed for the presence of 

inorganic phosphate using the Molybdovanadate method (Ueda and Wada, 1970) 

and assessed in triplicate at a wavelength of 400 nm using a Synergy 4 microplate 

reader (Bio-Tek, Winooski, VT).  Specific Na+/K+ ATPase activity was determined by 

the difference in Pi production from ATP in the presence of absence of ouabain 

(specific Na+/K+ ATPase inhibitor).  Unspecific phosphate hydrolysis was correlated 

by measuring Pi freed in the absence of protein suspension.  The inter- and intra-

assay coefficients for jejunum phosphorus determination were 3.8, and 3.4% 

respectively.   
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Histology  

  Whole jejunum samples fixed in formalin were sent to the Iowa State 

University Veterinary Diagnostic Laboratory for sectioning and hematoxylin and 

eosin staining of intestinal enterocytes.  Using a microscope (Leica® DMI3000 B 

Inverted Microscope, Bannockburn, IL) with an attached camera (QImaging® 12-bit 

QICAM Fast 1394, Surrey, BC) pictures were obtained of 10 microvilli per sample 

section.  On some occasions two pictures were needed to obtain a total of 10 

microvilli.  Each microvillus was measured for villus height and width, as well as 

crypt depth.  Finally, the averages of the ten microvilli were calculated and reported 

as one number per pig.  Images of individual villi were obtained using Q-capture Pro 

6.0 (QImaging®, Surey, BC) and measurements were taken using Image-Pro Plus 

7.0 (Media Cybernetics®, Bethesda, MD). 

Statistics 

   All data were statistically analyzed using the PROC MIXED procedure of 

SAS version 9.1 (SAS Inst. Inc. Cary NC).  Data are reported as LSmeans and 

considered significant if P < 0.05.  Data were evaluated using two distinct models.  

For daily measurements (body temperatures, respiration rates and feed intake) each 

animal’s respective parameter was analyzed using repeated measures with an auto 

regressive covariance structure and day as the repeated effect.  The model included 

environment, day, and the interaction.  Analysis also tested differences between all 

three environments on (TN, PFTN, HS), just d 7 variables (obtained at sacrifice). 
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           Results 

  Body temperature indices and production variables are reported in Chapter 

two.  In brief, HS pigs had a marked and sustained increase in rectal temperatures 

(1.5°C) and respiration rates (2X) compared to TN and PFTN pigs.  HS pigs also 

had a large decrease in FI (46%) compared to TN pigs and by design the PFTN pigs 

FI mirrored that of the HS pigs.  Pigs in TN conditions gained body weight (1.14 kg/d 

ADG) throughout the trial while the HS pigs initially lost 2.7 kg of BW at d 1 but 

gained 0.03 and 1.65 kg by d 3 and 7, respectively.  The PFTN pigs had lost 2.47 kg 

of BW by d 7.  

  Overall, small intestinal TER was decreased (P<0.05; 24%) during HS 

compared to TN pigs (Table 3.1; Figure A-3.4) but this difference did not change 

with time and no differences were observed compared to PFTN pigs (Figure 3.2).  

Irrespective of day, small intestine APP increased 81% (P<0.01) during HS 

compared to TN pigs (Table 3.1; Figure A-3.4).  Just d 7 analysis indicates HS pigs 

tended (P=0.06) to have increased APP (81%) compared to both TN and PFTN 

controls (Figure 3.2). 

Irrespective of day, plasma endotoxin concentrations from the jugular vein increased 

46% (P<0.05) in HS pigs compared to TN pigs (Table 3.1; Figure A-3.4).  However, 

analysis from all environments indicates no differences on d 7 (Figure 3.2).  

 There were no overall differences observed between treatments, or time for 

small intestinal glucose and lysine transport (Table 3.2).  Overall, and compared to 

TN pigs, glutamine transport was increased (91%; P<0.05) during HS (Table 3.2; 
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Figure A-3.5), but analysis of all three environments on d 7 indicates no differences 

in intestinal glutamine transport (Figure 3.3).  There was an environment by day 

interaction in jejunum Na+/K+ ATPase pump activity as it was markedly increased in 

HS pigs (175%; P<0.05) on d 1, but returned to TN levels by d 3 and 7  (Table 3.2; 

Figure 3.1).  Analysis of all three environments on d 7 indicates that PFTN pigs 

tended (P=0.11) to have a reduced (41%) jejunum Na+/K+ ATPase pump activity 

compared to TN and HS pigs (Figure 3.1). 

 Irrespective of day, small intestinal villous height was decreased (19%; 

P<0.05) in HS pigs compared to TN controls (Table 3.3; Figure A-3.6).  By d 7, both 

HS and PFTN pigs had reduced villous height (21%; P<0.01) compared to TN pigs 

(Figure 3.5).  There tended (P=0.11) to be a treatment by day interaction for villous 

width as it was increased 7% in HS pigs on d 1 and increased 13 and 19% on d 3 

and 7, respectively (Table 3.3; Figure A-3.6).  Analysis of all three environments on 

d 7 indicates HS increased width (22%; P<0.01) compared to both TN and PFTN 

pigs (Figure 3.5).  There was also a treatment by day interaction (P<0.01) as crypt 

depth decreased over time in HS pigs compared to TN pigs (Table 3.3; Figure A-

3.6).  On d 7 (Figure 3.5), compared to TN pigs, both HS and PFTN pigs had 

decreased crypt depth (P<0.05; 292a, 276b, 239c µm, respectively). 

          Discussion 

 Heat stress disrupts intestinal tight junctions and increases permeability in 

rodents and humans (Hall et al., 2001; Dokladny et al., 2006).  As an environmental 

heat-load increases, blood is diverted to the skin (via coordinated peripheral 
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vasodilatation and gastrointestinal tract vasoconstriction).  The orchestrated 

partitioning of blood results in the interior of the body (gut, stomach, spleen and liver) 

receiving reduced blood flow (Hall et al., 1999).  Consequently, the intestinal 

epithelium can become hypoxic, acidotic, ATP depleted, experience 

oxidative/nitrosative stress, and ultimately apoptosis can occur (Yan et al., 2006).  

These insults can damage enterocytes, increase permeability, and eventually lead to 

endotoxemia, inflammation and organ damage (Lambert, 2004).   

  Interestingly, nutrient restriction alone (similar to the HS and PFTN pigs) can 

lead to alterations in intestinal function, transport, morphology, and may increase the 

risk of developing bacterial sepsis (Ferraris and Carey, 2000).  Welsh and co-

workers (1998) also indicate increased permeability to macronutrients in moderately 

and severely malnourished humans.  Increased paracellular permeability may 

maximize nutrient absorption but this also increases the chance of bacterial 

translocation.   

 In our study, jugular LPS concentrations were increased in HS pigs and this is 

consistent with heat-stressed rodent models (Hall et al., 2001; Lim et al., 2009), 

chickens (Cronje, 2007) as well as human heat-stroke patients (Bouchama et al., 

1991).  This is a function of increased intestinal permeability as LPS is normally 

maintained within the small intestinal lumen and is typically too large of a molecule 

to fit though healthy intestinal tight junctions (Lambert, 2009).  Normally, the liver 

metabolizes and clears endotoxins (Hall et al., 2001) and thus the presence of 

endotoxin in the systemic circulation is indicative of the liver’s inability to filter a high 
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bacterial load (Leon, 2007).  Once the LPS enters circulation, it binds to LPS-binding 

protein (LBP; Gaffin and Hubbard, 1996) and activates the macrophage CD14 

receptor.  The CD14 receptor is a glycoprotein present on the surface of immune 

cells such as monocytes, macrophages and neutrophils (Morrison and Ryan, 1987) 

and activating the CD14 receptor signals the synthesis and secretion of pro-

inflammatory cytokines (TNF-α, IL-1β; Kielian and Blecha, 1995).  In general, 

cytokines communicate and partially coordinate the immune system (Leon, 2007), 

but also reduce appetite and alter metabolism (i.e. increased insulin, skeletal muscle 

proteolysis, etc…; Gaffin and Hubbard, 1996).  Some of the cytokine induced 

changes in metabolism are similar to characterized changes observed in heat-

stressed animals (Baumgard and Rhoads, 2011).   

  Small intestine transepithelial electrical resistance is a measure of how “tight” 

the junctions are and decreased TER reflects increased permeability (Yang et al., 

2007).  Consistent with the circulating LPS data, HS pigs had reduced TER and this 

agrees with in vitro (Dokladny et al., 2006) and in vivo rodent data (Prosser et al., 

2004).  The reduced TER in HS pigs also agrees with the increased APP data 

(Table 3.1).  Increased APP is a qualitative measure of FITC-LPS intestinal transport 

and is another indicator of “leakiness”.   Many of the effects HS has on intestinal 

integrity parameters appear to be directly mediated by reduced feed intake as the 

PFTN controls variables were similar to the HS pigs.  Consequently, many biological 

effects at the intestine purportedly caused by heat stress (Lambert, 2004; Hall et al., 

2001; Leon et al., 2007) appear to be indirect (mediated by reduced feed intake) 
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effects of environmental-induced hyperthermia.  To our knowledge, this is the first 

trial to evaluate the effects of HS on intestinal permeability while experimentally 

controlling for reduced nutrient intake.  However, our experimental design probably 

does not accurately model acute/intense HS typically observed in humans that 

succumb to heat-stroke (where nutrient restriction likely plays little or no role in 

intestinal permeability).  

  The intestinal epithelium is comprised of tight junctions which form the 

protective barrier.  This barrier aids in absorption and transport of nutrients while 

preventing translocation of potentially harmful molecules (i.e. toxins; Hossain and 

Hirata, 2008).  Organization of intestinal tight junctions is important in maintaining 

cell polarity and structure (Anderson and Van Itallie, 1995).  Epithelial cells also 

consist of an actin cytoskeleton which forms a large part of the epithelial barrier.  

Contraction of the actin cytoskeleton helps maintain cell motility and is regulated by 

myosin light chain kinase (MLCK; Yang et al., 2007).  Disrupted tight junctions are 

thought to be a major cause of increased intestinal permeability (Lambert, 2009).  

Phosphorylation of myosin light chain by MLCK has been observed during heat 

stress, suggesting that heat-induced increased contraction leads to opening of tight 

junctions (Yang et al., 2007).  In vitro, HS also causes alterations in the distribution 

of the protein ZO-1 (i.e. diffusion to cytosol; Ikari et al., 2005).  Similarly, ZO-1 

protein expression is also decreased, indicating tight junction disruption (Dokladny et 

al., 2006).  Heat stress also up-regulates occludin gene expression (Dokladny et al., 

2008) which is an important tight junction protein for maintaining barrier function and 
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increased expression may indicate a protective response.   

  Heat-stressed animals reduce feed intake in an attempt to minimize basal 

heat production and this induces a malabsorptive state.  Consequently, it has been 

hypothesized (Mitchell and Carlisle, 1992) that the intestine adapts in order to 

optimize/maximize nutrient absorption and minimize the nutrient imbalance.  Heat-

stressed animals appear to shift post-absorptive fuel selection and increase their 

reliance on glucose metabolism while deemphasizing fatty acid oxidation (Baumgard 

and Rhoads, 2011).  Both the nutrient absorption optimization and post-absorptive 

metabolic change theories are supported by in vivo data indicating heat stress 

induced increased in galactose and glucose absorption ability (Mitchell and Carlisle, 

1992; Garriga et al., 2006).  In addition, in vivo experiments demonstrate increased 

renal glucose re-absorption (also via SGLT-1) ability (Sussman and Renfro, 1997). 

Mitchell and Carlisle (1997) also reported that heat-stressed poultry have an 

increased ability to absorb methionine.  In contrast to poultry data, our results 

indicate that HS pigs do not have an increased ability to intestinally transport 

glucose or lysine.  However, HS pigs did have an increase in the transport 

glutamine, especially during the acute stages of heat stress (Table 3.2).  Glutamine 

is of interest because it is a primary energy source for intestinal cells such as 

enterocytes (Singleton and Wischmeyer, 2006) and it is not clear whether or not the 

observed changes reflect increased transport or increased glutamine oxidation.  

Regardless, glutamine appears to be playing a key role in intestinal integrity 

because dietary glutamine improves the intestinal integrity of malnourished children 
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(Lima et al., 2005) and this may be because it up-regulates heat-shock proteins 

(Sikora and Grzesiuk, 2007).   

  In the intestine, the Na+/K+ ATPase is responsible for maintaining cell 

osmolarity and creating a gradient which allows for transport of glucose and amino 

acids (Cant et al., 1996).  Assuming that the GI tract contributes 20% of total O2 

consumption, intestinal Na+/K+ ATPase may contribute anywhere from 29-62% of GI 

energy expenditure and anywhere from 5.7 to 12.4% of total body energy 

expenditure in ruminant animals (Mcbride and Kelley, 1990).  During heat stress 

cells become more permeable to sodium, and thus require more sodium pump 

activity to maintain osmolyte homeostasis (Gaffin and Hubbard, 1996) and this 

probably explains the increase in jejunum Na+/K+ ATPase.  Decreased intestinal 

pump activity in PFTN pigs may be explained by decreased nutrient intake as 

decreased Na+/K+ ATPase activity in the small intestine has previously been 

reported in fasting rats (Murray and Wild, 1980).  In addition, insulin stimulates 

Na+/K+ ATPase (Clausen, 2010) and the PFTN pigs were hypoinsulemic. 

 Intestinal villi function to increase surface area for nutrient absorption. 

Morphological changes in the small intestine were observed in our study.  Previous 

studies looking specifically at HS effects on morphology have shown varying results.  

A study in heat-stressed chickens did not find any differences in villus height or crypt 

depth (Quinteiro-Filho et al., 2010).  However, a study on pigs heat-stressed to 40°C 

observed decrease villus height in jejunum, as well as duodenum (Yu et al., 2010).  

In addition, crypt depth in jejunum tissue was significantly decreased during heat 
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stress.  Similarly, another heat stress study by the same investigators demonstrated 

shorter villus height in duodenum and jejunum tissue as well as shallower crypt 

depth (Liu et al., 2009).  Shortened height of intestinal villi and crypts indicates 

damage to the intestinal epithelium (Figure 3.4c).  Damage to the epithelium (i.e. 

epithelial sloughing and necrosis; Figure 3.4b) is thought to contribute largely to 

increased permeability (Lambert, 2002).  This damage appears to occur before other 

organ damage because the GI tract receives reduced blood flow first.  Also, recovery 

of the GI tract takes longer than other regions of the body (Gaffin and Hubbard, 

1996).  Damage to the intestinal epithelium may also affect digestion and absorption 

of nutrients (Liu et al., 2009). 

        Conclusions 

  Heat stress compromises intestinal integrity, but this appears to be due to 

heat-induced reductions in nutrient intake.  This increased permeability is likely due 

to alterations in intestinal morphology and decreased function of intestinal tight 

junctions.  However, this heat stress model may not accurately represent a severely 

acute bout of heat stress and may not be a good indicator of what occurs in human 

heat-stroke patients.  
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Figure 3.1 : Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C) 
and heat stress (HS; 35°C) conditions on the (A) tempora l change in Jejunum 
Na+/K+ ATPase activity (B) effects of TN, HS, and pair-feeding in thermal neutral 
conditions (PFTN) on change in Jejunum Na+/K+ ATPase at the end of the 
experiment. a,b,cP<0.05
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Table  3.1 Effects of heat stress (HS) on intestinal permeability variables in growing pigs  

 Day of Experiment    
 1  3  7   P  

Parameter TN1 HS  TN HS  TN HS  SEM Trt Day T x D2 
Plasma LPS3 23.8 36.8  25.5 38.3  27.2 36.6  5.3 0.01 0.94 0.92 
TER4 991 777  1028 794  897 648  135 0.04 0.55 0.99 
APP5 1.71 2.62  1.92 3.42  1.01 2.43  0.55  <0.01 0.25 0.85 
1Thermal Neutral 
2Treatment x Day Interaction 

3LPS – Lipopolysaccharide, EU (endotoxin units) 
4TER – Transepithelial Electrical Resistance, Ω x cm2 
5APP – Apparent Permeability Coefficient for FITC-LPS, µg/mL/min/cm2 
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Figure 3.2: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C), 
heat stress (HS; 35°C) and pair-feeding in thermal neu tral conditions (PFTN) on (A) 
Plasma LPS (B) APP, and (C) TER at the end of the experiment in growing pigs. 
a,b,cP<0.05 
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Table  3.2 Effects of heat stress (HS) on intestinal nutrient transport in growing pigs 
 Day of Experiment    
 1  3  7   P  

Parameter TN1 HS  TN HS  TN HS  SEM Trt Day T x D2 
Glucose3 1.56 2.05  1.65 2.11  1.67 1.33  0.43 0.56 0.62 0.53 
Lysine 0.82 1.39  0.95 1.10  0.87 1.36  0.44 0.28 0.98 0.90 
Glutamine 0.33 0.94  0.31 0.46  0.38 0.54  0.16 0.02 0.31 0.27 
Na+/K+ ATPase4 128.1a 352.9b  164.9a 193.0a  142.7a 119.7a  47.9 0.06 0.08 0.03 
1Thermal Neutral 
2Treatment x Day Interaction 
3Small Intestinal Nutrient Transport, µA/cm2 
4Jejunum  Na+/K+ ATPase, µmol Pi/mg protein/h 
a,b,cP <0.05 
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Figure 3.3: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C), 
heat stress (HS; 35°C) and pair-feeding in thermal neu tral conditions (PFTN) on (A) 
Glucose transport (B) Lysine transport, and (C) Glutamine transport at the end of the 
experiment in growing pigs. a,b,cP<0.05 
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Table 3.3 Effects of heat stress (HS) on intestinal morphology in growing pigs  

 Day of Experiment    
 1  3  7   P  

Parameter TN1 HS  TN HS  TN HS  SEM Trt Day T x D2 
Villous height, µm 500 426  497 397  503 385  14 <0.01 0.35 0.32 

Villous width, µm 150a 161b  146a 165b  151a 178c  4 <0.01 0.05 0.11 

Crypt depth, µm 285ab 304b  292b 302b  292b 276a  6 0.32 0.07 0.02 
1Thermal Neutral 
2Treatment x Day Interaction 
a,b,cP <0.05 
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Figure 3.4:  Morphological alterations of porcine small intestine in (A) thermal 
neutral conditions (TN; 20°C), (B) heat stress conditi ons (HS; 35°C), or (C) pair 
feeding in thermal neutral conditions (PFTN).  The arrows in panel (B) indicate 
damage to intestinal villi after heat stress.
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Figure 3.5: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C), 
heat stress (HS; 35°C) and pair-feeding in thermal neu tral conditions (PFTN) on (A) 
Villus height (B) Villus width, and (C) Crypt depth at the end of the experiment in 
growing pigs. a,b,cP<0.05 
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CHAPTER 4 
INTEGRATIVE SUMMARY 

 
 

  Heat stress negatively impacts all areas of animal agriculture, and 

jeopardizes human health.  The global economic impact of heat stress is immense 

(much higher than all other variables that contribute to suboptimal production 

combined) and this value is likely to increase with the elevated threat of global 

warming.  Despite recent advances in heat abatement strategies, heat stress 

continues to cause increased days on feed, numerous health problems and 

mortality, reduced growth, and reduced reproductive performance.   

  Although heat stress has been researched extensively in pigs, much of the 

literature is focused on applied and practical aspects of pork production and not on 

metabolism and molecular mechanisms.  Many heat stress studies in pigs have not 

thoroughly differentiated between the direct and indirect effects (i.e. reduced FI) of 

heat.  Utilizing a pair-fed thermal neutral model is necessary in order to accurately 

determine if environmental heat is independently causing reduced production or if 

reduced nutrient intake (caused by heat stress) is partially responsible.  Utilizing this 

type of experimental design will likely allow for the development of more accurate 

and useful mitigation strategies in the future.  

  In the current study, the reduction in feed intake due to heat stress was 

responsible for the decreased body weight gain in growing pigs.  Heat stress directly 

and indirectly (via reduced feed intake) affected physiology, metabolism, and 

performance in growing pigs.  Heat stress directly altered aspects of post-absorptive 



www.manaraa.com

103 

 

metabolism by increasing circulating insulin concentrations.  This elevated insulin 

inhibited lipolysis (illustrated by reduced circulating NEFA levels) and increased 

lipogenesis (via FAS enzyme activity).  An increased heat load also directly altered 

protein metabolism by increasing muscle proteolysis.  The reasons behind these 

alterations in whole-body energetics are not clear, but likely represent an 

evolutionary adaptation for survival. 

           Reduced feed intake, independent of hyperthermia also causes alterations in 

intestinal barrier function, and can also lead to “leaky gut”.  This appeared to be the 

case in longer term heat stress.  In the current study, alterations in intestinal 

permeability indeed appeared to be due to the heat-induced reduced feed intake in 

growing pigs.  However, various differences in intestinal morphology indicated that 

some damage may also be caused by heat alone.  It is not clear if this is the case in 

acute hyperthermia, as is the case with many heat stroke patients.  However, it is 

clear from the current study, that increased permeability due to either cause, is 

negatively affecting animal health and production. 

  Increased intestinal permeability and infection may also have effects on 

metabolism.  Stress can lead to production of pro-inflammatory cytokines such as 

interleukins or TNFα and an increase in LPS in systemic circulation.  This affects 

metabolism and increases inflammation and can ultimately can lead to insulin 

resistance (Laugerette et al., 2011).  Interestingly, it appears that the immune 

system influences parameters of glucose homeostasis.  For example, despite 

reduced feed intake, experimentally induced mastitic cows have increased 
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circulating insulin levels (Waldron et al., 2006).  In addition, LPS IV infused steers 

have immediate and extreme hyperinsulinemia (i.e. > 30 fold; Rhoads et al., 2009b) 

and this occurs with only a mild decrease in plasma glucose levels.  As a 

consequence, it appears that heat-induced leaky-gut may be mediating some of the 

inexplicable changes in post-absorptive metabolism (Baumgard and Rhoads, 2011).   

  The role of heat shock proteins also seems to influence mediators of infection 

and inflammation (Dokladny et al., 2010). These are molecular chaperones and are 

up-regulated during times of elevated heat and provide protection.  Heat shock 

proteins have previously been shown to mediate responses to endotoxin induced 

cytokine production (Dokladny et al., 2001), and HSP 70 may interfere with NFκB 

transcription, thus disrupting the inflammatory response (Shi et al., 2006).  This is 

further evidence that intestinal permeability may be linked with other mechanisms 

and may provide new targets for heat shock therapy.  

 Areas that require further investigation include enzyme activity levels of other 

lipogenic enzymes as well as investigate what directly causes increased circulating 

insulin, and how this may affect other areas of metabolism, as well as intestinal 

barrier function.  Data obtained in the current studies provides novel information 

regarding how heat stress affects growing pigs.  This will allow for future studies to 

further characterize a porcine model of heat stress, as well as enable new methods 

to ameliorate the negative effects of a heat load. 
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APPENDIX  
 

 

 

 

Figure A-1.1: Effects of constant environment [ad-libitum intake in thermal neutral     
(TN; 20°C) conditions; heat stress (HS; 35°C) or pairfee ding in thermal neutral 
conditions (PFTN)] on (A) Rectal temperatures and (B) Respiration rates at all 
timepoints in growing pigs. 
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Figure A-1.2: Effects of constant environment [ad-libitum intake in thermal neutral     
(TN; 20°C) conditions; heat stress (HS; 35°C) or pairfee ding in thermal neutral 
conditions (PFTN)] on (A) Skin temperature at the shoulder and (B) Skin 
temperature at the ham at all timepoints in growing pigs. 
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Figure A-1.3: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  Temporal change in average 
daily gain and (B) Effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on average daily gain at the end of the experiment. a,b,cP<0.05
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Table A-1.1 Effects of heat stress (HS) and plane of nutrition on 
production parameters in growing pigs  

 Environment   

Parameter TN1  HS  PFTN2 SEM P 

ADFI1, kg/d 2.00a  1.06b  1.09b 0.14 <0.05 

ADG2, kg/d 1.11a  0.24b  -0.35c 0.08 <0.01 
∆ BW3, kg2 7.76a  1.65b  -2.47c 0.57 <0.01 
1Thermal Neutral 
2Pair-fed Thermal Neutral 
3Average Daily Feed Intake 
4Average Daily Gain 
5Change in Body Weight 
a,b,cP < 0.05 

 

 

 

 

 

Table  A-1.2 Effects of heat stress (HS) and plane of nutrition on plasma 
energetic variables in growing pigs  

 Environment   
Parameter TN1  HS  PFTN2 SEM P 
NEFA, mmol/L3 0.072a  0.086a  0.184b 0.029 0.05 
Glucose, mg/dL 116.8  105.8  105.5 6.0 0.37 
BUN, mg/dL4 10.0  8.0  8.3 1.1 0.37 
Insulin, ng/mL 0.18  0.12  0.06 0.03 0.03 
Cholesterol, mg/dL 92.7  92.7  94.3 3.9 0.96 
Creatinine, mg/dL 1.0a  1.51b  1.20a 0.12 <0.01 
Triglycerides, mg/dL 37.5  47.3  45.5 5.2 0.34 
ALK Phos, IU/L5 203.5a  103.3b  209.8a 15.6 <0.01 
1Thermal Neutral 
2Pair-fed Thermal Neutral 
3Non-esterified Fatty Acids 
4Blood Urea Nitrogen 
5Alkaline Phosphatase 
a,b,cP < 0.05 
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Table A-1.4 Effects of heat stress (HS) and plane of nutrition on adipose 
tissue lipogenic enzyme activity in growing pigs  

 Environment   
Parameter TN1  HS  PFTN2 SEM P 
FAS activity3 19.9a  12.9ab  7.3b 2.8 0.03 
G-6-PDH activity4 34.9a  26.6b  35.5a 2.5 0.02 
G-3-PDH activity5 68.6  64.6  64.4 6.6 0.90 
1Thermal Neutral 
2Pair-fed Thermal Neutral 
3Fatty acid synthase, nmol NADPH oxidized/min/mg protein 
4Glucose-6-phosphate dehydrogenase, nmol NADPH produced/min/mg 
protein 
5Glycerol-3-phosphate dehydrogenase, nmol NADH oxidized/min/mg protein 
a,b,cP < 0.05 

 

 

Table A -1.3 Effects of heat stress (HS) and plane of nutrition on energetic 
variables of the Longissimus Dorsi (LD) and liver in growing pigs  

 Environment   
Parameter TN1  HS  PFTN2 SEM P 
LD HSP 703 1.29a  2.27b  1.02c 0.06 0.02 
LD ATPase4 135.5  189.2  143.3 38.8 0.54 
Liver ATPase 104.3a  88.8a  68.0b 7.7 0.02 
LD AMPK, mg/mL5 0.257  0.299  0.226 0.037 0.24 
Liver AMPK, mg/mL 1.29a  1.32a  0.99b 0.11 0.08 
1Thermal Neutral 
2Pair-fed Thermal Neutral 
3Heat-Shock Protein 70, arbitrary units 

4Na+/K+ ATPase pump activity, µmol Pi/mg protein/h 
5AMP-Activated Kinase Phosphorylation, mg/mL 
a,b,cP < 0.05 
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Figure A-1.4: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 20°C), heat stress (HS; 35°C) and 
pair-feeding in thermal neutral conditions (PFTN) on (A) Plasma non-esterified fatty acids (NEFA), (B) Plasma insulin, 
(C) Plasma glucose, and (D) Plasma blood urea nitrogen (BUN) throughout the experiment in growing pigs. a,b,cP<0.05 
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Figure A-1.5: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
cholesterol and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma cholesterol at the end of the experiment. a,b,cP<0.05 
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Figure A-1.6: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
triglycerides and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma triglycerides at the end of the experiment. a,b,cP<0.05 
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Figure A-1.7: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
creatinine and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma creatinine at the end of the experiment. a,b,cP<0.05 
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Figure A-1.8: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
alkaline phosphatase (ALK phosphatase) and (B) effects of TN, HS, and pair-feeding 
in thermal neutral conditions (PFTN) on change in plasma ALK phosphatase at the 
end of the experiment. a,b,cP<0.05 
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Figure A-1.9:  Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C), or heat stress (HS; 35°C) on (A) Longissumus Dorsi (LD) Na+/K+ ATPase 
activity and (B) liver Na+/K+ ATPase throughout the experiment in growing pigs. 
a,b,cP<0.05   
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Figure A-2.0: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C), or heat stress (HS; 35°C) on (A) Longissumus Dorsi (LD) AMPK 
phosphorylation and (B) liver AMPK phosphoryation throughout the experiment in 
growing pigs. a,b,cP<0.05 
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Figure A-2.1: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C), or heat stress (HS; 35°C) on (A) Adipose tissue fa tty acid synthase (FAS) 
enzyme activity and (B) Adipose tissue glucose-6-phosphate dehydrogenase (G-6-
PDH) enzyme activity throughout the experiment in growing pigs. a,b,cP<0.05 
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Table A -1.5 Effects of heat stress (HS) on plasma variables in growing pigs  

 Day of Experiment    
 1  3  7   P  

Parameter TN1 HS  TN HS  TN HS  SEM Trt Day T x D2 
Total Protein, g/dL 6.4 7.0  6.4 6.7  6.3 6.8  0.1 <0.01 0.44 0.60 
Albumin, mg/dL 3.32a 3.72b  3.42ab 3.25a  3.50ab 3.46a  0.1 0.56 0.38 0.10 
CK, IU/L3 8785 4787  9140 8342  7768 6392  2180 0.26 0.66 0.75 
GGT, IU/L4 47.3a 47.8a  37.0b 53.2a  46.8a 47.8a  3.9 0.07 0.80 0.11 
AST, IU/L5 53.5 55.2  76.0 79.5  54.0 50.8  11.7 0.95 0.08 0.96 
HCO3, mEq/L6 30.5 25.7  31.0 28.0  28.3 26.6  1.4 <0.01 0.35 0.53 
Calcium, mg/dL 10.72 10.05  10.82 10.16  10.87 10.31  0.16 <0.01 0.44 0.93 
Magnesium,  mg/dL 1.60 1.73  1.62 1.76  1.67 1.82  0.07 0.02 0.43 0.99 
Potassium, mg/dL 6.6 6.1  6.8 5.9  6.8 6.4  0.4 0.07 0.76 0.79 
Sodium, mg/dL 139.7b 142.2c  138.8ab 139.3b  141.0bc 136.5a  1.1 0.60 0.10 <0.01 
Chloride, mEq/L 100.5a 105.3b  99.0a 104.0b  101.8ab 100.7a  1.1 <0.01 0.30 <0.01 
Phosphorus, mg/dL 8.1b 9.3c  7.5ab 7.3a  8.8c 7.3a  0.3 0.48 <0.01 <0.01 
1Thermal Neutral 
2Treatment x Day interaction 

3Creatine Kinase 
4Gamma-glutamyl Transferase 
5Aspartate Amino Transferase 
6Bicarbonate 
a,b,cP<0.05 
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Table A -1.6 Effects heat stress (HS) on plasma variables in growing pigs  

 Environment   
Parameter TN1  HS  PFTN2 SEM P 
Total Protein, g/dL 6.3a  6.8b  7.4c 0.1 <0.01 
Albumin, mg/dL 3.50a  3.46a  4.25b 0.15 <0.01 
Sodium, mEq/L 141.0a  136.6b  139.8a 0.82 <0.01 
Potassium, mEq/L 6.80  6.41  6.73 0.44 0.75 
Chloride, mEq/L 101.8  100.7  99.3 0.9 0.26 
Calcium, mg/dL 10.87a  10.31b  10.68ab 0.16 0.03 
Phosphorus, mg/dL 8.80a  7.29b  8.43a 0.32 <0.01 
Magnesium, mg/dL 1.67  1.82  1.75 0.08 0.33 
HCO3

- , mEq/L1 28.3  26.6  25.0 1.68 0.47 
AST, IU/L2 54.0  50.8  76.5 8.85 0.16 
CK, IU/L3 7768  6392  9257 2011 0.60 
GGT, IU/L4 46.8  47.8  40 3.6 0.33 
1Thermal Neutral 
2Pair-fed Thermal Neutral 
3Bicarbonate 
4Aspartate Aminotransferase 
5Creatine Kinase 
6Gamma-glutamyl Transferase 
a,b,cP < 0.05 



www.manaraa.com

140 

 

 

 

Figure A-2.2: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
total protein and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma total protein at the end of the experiment. a,b,cP<0.05 
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Figure A-2.3: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
albumin and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma albumin at the end of the experiment. a,b,cP<0.05 
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Figure A-2.4: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
creatine kinase (CK) and (B) effects of TN, HS, and pair-feeding in thermal neutral 
conditions (PFTN) on change in plasma CK at the end of the experiment. a,b,cP<0.05 
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Figure A-2.5: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
gamma-glutamyl transpeptidase (GGT) and (B) effects of TN, HS, and pair-feeding 
in thermal neutral conditions (PFTN) on change in plasma GGT at the end of the 
experiment. a,b,cP<0.05 
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Figure A-2.6: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
aspartate aminotransferase (AST) and (B) effects of TN, HS, and pair-feeding in 
thermal neutral conditions (PFTN) on change in plasma AST at the end of the 
experiment. a,b,cP<0.05 
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Figure A-2.7: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
bicarbonate (HCO3

-) and (B) effects of TN, HS, and pair-feeding in thermal neutral 
conditions (PFTN) on change in plasma HCO3

- at the end of the experiment. 
a,b,cP<0.05 
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Figure A-2.8: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
calcium and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma calcium at the end of the experiment. a,b,cP<0.05 
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Figure A-2.9: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
magnesium and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma magnesium at the end of the experiment. a,b,cP<0.05 
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Figure A-3.0: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
sodium and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma sodium at the end of the experiment. a,b,cP<0.05 
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Figure A-3.1: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
potassium and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma potassium at the end of the experiment. a,b,cP<0.05 

A 

B 

a 

b 



www.manaraa.com

150 

 

 

  

Figure A-3.2: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
chloride and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma chloride at the end of the experiment. a,b,cP<0.05 
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Figure A-3.3: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) and heat stress (HS; 35°C) conditions on the (A)  temporal change in plasma 
phosphorus and (B) effects of TN, HS, and pair-feeding in thermal neutral conditions 
(PFTN) on change in plasma phosphorus at the end of the experiment. a,b,cP<0.05 
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Table A -1.7 Effects of heat stress (HS) and plane of nutrition on intestinal 
permeability measures in growing pigs  

 Treatment    
Parameter TN1  HS  PFTN2  SEM P 
Plasma LPS1  27.2  36.6  34.1  4.1 0.25 
TER2  897  648  741  170 0.59 
APP3 1.1a  2.4b  1.7ab  0.4 0.05 
1Thermal Neutral 
2Pair-fed Thermal Neutral 
1LPS – Lipopolysaccharide, EU (endotoxin units)  
2TER – Transepithelial electrical resistance, Ω x cm2 
3APP – Apparent permeability coefficient for FITC-LPS, µg/mL/min/cm2  
a,b,cP <0.05 

Table A -1.8 Effects of heat stress (HS) and plane of nutrition on intestinal nutrient 
transport in growing pigs  

 Treatment    
Parameter TN1  HS  PFTN2  SEM P 
Glucose,  µA/cm2 1.67  1.33  2.10  0.31 0.23 
Glutamine,  µA/cm2 0.38  0.54  0.37  0.14 0.53 
Lysine,  µA/cm2 0.87  1.36  1.54  0.50 0.66 
Na+/K+ ATPase4 142.7a  119.7ab  77.4b  19.4 0.11 
1Thermal Neutral 
2Pair-fed Thermal Neutral 
3Jejunum  Na+/K+ ATPase, µmol Pi/mg protein/h 
a,b,cP <0.05 
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Table A -1.9 Effects of heat stress (HS) and plane of nutrition on intestinal 
morphology in growing pigs 

 Treatment    
Parameter TN1  HS  PFTN2  SEM P 
Villous height, µm 503a  385b  409b  10 <0.01 
Villous width, µm 151a  178b  143a  4 <0.01 
Crypt depth, µm 292a  276b  239c  3 <0.01 
1Thermal Neutral 
2Pair-fed Thermal Neutral 
a,b,cP <0.05 
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Figure A-3.4: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) or heat stress (HS; 35°C) on (A) Plasma LPS (B)  Transepithelial electrical 
resistance (TER), and (C) Apparent permeability coefficient (APP) throughout the 
experiment in growing pigs. a,b,cP<0.05 
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Figure A-3.5: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) or heat stress (HS; 35°C) on (A) Glucose transpor t (B) Lysine transport, and 
(C) Glutamine transport throughout the experiment in growing pigs. a,b,cP<0.05 
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Figure A-3.6: Effects of ad-libitum feed intake in thermal neutral conditions (TN; 
20°C) or heat stress (HS; 35°C) on (A) Villus height (B) Villus width, and (C) Crypt 
depth throughout the experiment in growing pigs. a,b,cP<0.05 
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